A Fibonacci-Tribonacci Fusion Technique

By Russell Walsmith
ixitol@yahoo.com

The Fibonacci sequence is generated by the recursive formula

$$
\begin{equation*}
F_{0}=0, \quad F_{1}=1, \quad F_{n}=F_{n-1}+F_{n-2} \tag{1.1}
\end{equation*}
$$

Iteration of (1.1) gives the familiar $0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610 \ldots$ A000045

The tribonacci sequence is generated by the recursive formula

$$
\begin{equation*}
T_{0}=0, \quad T_{1}=1, \quad T_{2}=1, \quad T_{n}=T_{n-1}+T_{n-2}+T_{n-3} \tag{1.2}
\end{equation*}
$$

Iterating (1.2) gives $0,1,1,2,4,7,13,24,44,81,149,274,504,927,1705,3136,5768 \ldots$ A000073

Based on a 'conditional coefficients' idea shared by Michael Somos, (1.1) and (1.2) are 'hybridized' in (1.3).

$$
\begin{gather*}
H_{-1}=-1, \quad H_{0}=0, \quad H_{1}=1, \quad H_{n}=H_{n-1}+b H_{n-2}+c H_{n-3} \\
\text { for } n>1, \text { if }\left\{\begin{array}{l}
H_{n-1} \text { is odd, then } b=1, c=0 \\
H_{n-1} \text { is even, then } b=0, c=1
\end{array}\right. \tag{1.3}
\end{gather*}
$$

I.e., when F_{n-1} is odd, this sequence is generated by the usual Fibonacci-type recursion: $H_{n}=H_{n-1}+H_{n-2}$. When H_{n-1} is even, then a tribonacci-type recursion kicks in and $H_{n}=H_{n-1}+H_{n-3}$.

For $n=1,2,3 \ldots,(1.3)$ generates $\underline{\text { A254308 }}=0,1,1,2,3,5,8,11,19,30,41,71,112,153,265 \ldots$
Working backwards for $a_{n}<0$, i.e., terms left of zero: $A=\ldots-989,-418,153,-265,-112,41,-71,-30,11$, $-19,-8,3,-5,-2,1,-1,0,1,1,2,3,5,8,11,19,30,41,71,112,153,265,418,571,989,1560,2131$, $3691,6822,8953,15775,24728,33681,58409,92090,125771,217861,343632,569403 \ldots$
A is factored into its nested sequences:

$$
\begin{aligned}
& a_{3 n-1}=\ldots-989,-265,-71,-19,-5,-1,1,5,19,71,265,989,3691,15775,58409,217861 \ldots=\underline{\mathrm{A} 001834} \\
& a_{3 n}=\ldots-418,-112,-30,-8,-2,0,2,8,30,112,418,1560,6822,24728,92090,343632 \ldots=\underline{\mathrm{A} 052530} \\
& a_{3 n+1}=\ldots 153,41,11,3,1,1,3,11,41,153,571,2131,8953,33681,125771,569403 \ldots=\underline{\mathrm{A} 001835}
\end{aligned}
$$

Most Fibonacci identities seem not to work for this sequence, but two that do are these:
(i) $\frac{a_{3 n}}{2}+\frac{a_{3 n-3}}{2}=a_{3 n-1}$
(ii) $\frac{a_{3 n}}{2}-\frac{a_{3 n-3}}{2}=a_{3 n-2}$

