login
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two maximums of the diagonal and antidiagonal minus the sum of the minimums of the central row and column nondecreasing horizontally and vertically
8

%I #4 Jan 27 2015 21:51:56

%S 512,2812,2812,12616,18098,12616,54236,93326,93326,54236,236024,

%T 460326,517934,460326,236024,1021428,2313072,2530381,2530381,2313072,

%U 1021428,4351908,11552577,13348182,9867433,13348182,11552577,4351908,18369164

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two maximums of the diagonal and antidiagonal minus the sum of the minimums of the central row and column nondecreasing horizontally and vertically

%C Table starts

%C .......512.......2812.......12616.......54236.......236024......1021428

%C ......2812......18098.......93326......460326......2313072.....11552577

%C .....12616......93326......517934.....2530381.....13348182.....69860227

%C .....54236.....460326.....2530381.....9867433.....43077907....170114970

%C ....236024....2313072....13348182....43077907....201263574....821922862

%C ...1021428...11552577....69860227...170114970....821922862...2586900868

%C ...4351908...57873415...375506912...668843106...3675487170...8957909107

%C ..18369164..290073742..2051413540..2655696397..18140259210..36351177418

%C ..77344420.1451688456.11310694254.10186556028..87601779910.119487334237

%C .325241108.7262959692.62889999700.39428714311.447277560513.419660707762

%H R. H. Hardin, <a href="/A254306/b254306.txt">Table of n, a(n) for n = 1..881</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 17]

%F k=2: [order 32] for n>37

%F k=3: [order 41] for n>47

%F k=4: [order 41] for n>51

%F k=5: [order 48] for n>62

%F k=6: [order 54] for n>71

%F k=7: [order 66] for n>86

%e Some solutions for n=2 k=4

%e ..0..1..0..0..0..1....0..1..1..1..1..0....0..0..1..1..0..1....0..1..1..0..1..0

%e ..0..0..0..0..0..1....0..0..0..0..0..1....0..0..0..0..0..0....0..1..0..0..1..1

%e ..1..0..0..1..1..0....0..0..1..1..0..0....1..0..0..0..1..0....0..1..0..1..0..0

%e ..1..1..0..0..0..0....1..1..1..1..1..1....0..1..1..0..1..1....0..1..0..1..0..1

%Y Column 1 is A254253

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Jan 27 2015