login
A254306
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two maximums of the diagonal and antidiagonal minus the sum of the minimums of the central row and column nondecreasing horizontally and vertically
8
512, 2812, 2812, 12616, 18098, 12616, 54236, 93326, 93326, 54236, 236024, 460326, 517934, 460326, 236024, 1021428, 2313072, 2530381, 2530381, 2313072, 1021428, 4351908, 11552577, 13348182, 9867433, 13348182, 11552577, 4351908, 18369164
OFFSET
1,1
COMMENTS
Table starts
.......512.......2812.......12616.......54236.......236024......1021428
......2812......18098.......93326......460326......2313072.....11552577
.....12616......93326......517934.....2530381.....13348182.....69860227
.....54236.....460326.....2530381.....9867433.....43077907....170114970
....236024....2313072....13348182....43077907....201263574....821922862
...1021428...11552577....69860227...170114970....821922862...2586900868
...4351908...57873415...375506912...668843106...3675487170...8957909107
..18369164..290073742..2051413540..2655696397..18140259210..36351177418
..77344420.1451688456.11310694254.10186556028..87601779910.119487334237
.325241108.7262959692.62889999700.39428714311.447277560513.419660707762
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 17]
k=2: [order 32] for n>37
k=3: [order 41] for n>47
k=4: [order 41] for n>51
k=5: [order 48] for n>62
k=6: [order 54] for n>71
k=7: [order 66] for n>86
EXAMPLE
Some solutions for n=2 k=4
..0..1..0..0..0..1....0..1..1..1..1..0....0..0..1..1..0..1....0..1..1..0..1..0
..0..0..0..0..0..1....0..0..0..0..0..1....0..0..0..0..0..0....0..1..0..0..1..1
..1..0..0..1..1..0....0..0..1..1..0..0....1..0..0..0..1..0....0..1..0..1..0..0
..1..1..0..0..0..0....1..1..1..1..1..1....0..1..1..0..1..1....0..1..0..1..0..1
CROSSREFS
Column 1 is A254253
Sequence in context: A250820 A250497 A254260 * A258530 A254922 A254253
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 27 2015
STATUS
approved