The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254297 Consider the nontrivial zeros of the Riemann zeta function on the critical line 1/2 + i*t and the gap, or first difference, between two consecutive such zeros; a(n) is the lesser of the two zeros at a place where the gap attains a new minimum. 11
 1, 2, 3, 5, 8, 10, 14, 20, 25, 28, 35, 64, 72, 92, 136, 160, 187, 213, 299, 316, 364, 454, 694, 923, 1497, 3778, 4766, 6710, 18860, 44556, 73998, 82553, 87762, 95249, 354770, 415588, 420892, 1115579, 8546951 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Since all zeros are assumed to be on the critical line, the gap, or first difference, between two consecutive zeros is measured as the difference between the two imaginary parts. Inspired by A002410. No other terms < 10000000. The minimum gap so far is 0.002323... LINKS Glen Pugh, The Riemann Hypothesis in a Nutshell. FORMULA a(n) = A326502(n) + 1. - Artur Jasinski, Oct 24 2019 EXAMPLE a(1)=1 since the first Riemann zeta zero, 1/2 + i*14.13472514... (A058303) has no previous zero, so its gap is measured from 0. a(2)=2 since the second Riemann zeta zero, 1/2 + i*21.02203964... (A065434) has a gap of 6.887314497... which is less than the previous gap of ~14.13472514. a(3)=3 since the third Riemann zeta zero, 1/2 + i*25.01085758... (A065452) has a gap of 3.988817941... which is less than ~6.887314497. The fourth Riemann Zeta zero, 1/2 + i*30.42487613... (A065453) has a gap of 5.414018546... which is not less than ~6.887314497 and therefore is not in the sequence. a(4)=5 since the fifth Riemann zeta zero, 1/2 + i*32.93506159... (A192492) has a gap of 2.510185462... which is less than ~3.988817941. a(5)=8 since the eighth Riemann zeta zero, 1/2 + i*43.32707328...  has a gap of 2.408354269... which is less than ~2.510185462. MATHEMATICA k = 1; mn = Infinity; y = 0; lst = {}; While[k < 10001, z = N[ Im@ ZetaZero@ k, 64]; If[z - y < mn, mn = z - y; AppendTo[lst, k]]; y = z; k++]; lst CROSSREFS Cf. A002410, A100060, A161914, A117538, A153595, A326502. Sequence in context: A183871 A211542 A022955 * A306972 A087279 A246346 Adjacent sequences:  A254294 A254295 A254296 * A254298 A254299 A254300 KEYWORD nonn AUTHOR Robert G. Wilson v, Jan 27 2015 EXTENSIONS a(38) from Arkadiusz Wesolowski, Nov 08 2015 a(39) from Artur Jasinski, Oct 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 23:31 EDT 2022. Contains 353826 sequences. (Running on oeis4.)