OFFSET
0,1
COMMENTS
This is the sequence of ninth terms of "second partial sums of m-th powers".
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Luciano Ancora, Demonstration of formulas
Index entries for linear recurrences with constant coefficients, signature (45,-870,9450,-63273,269325,-723680,1172700,-1026576,362880).
FORMULA
G.f.: -3*(2333280*x^8 - 5080464*x^7 + 4500500*x^6 - 2143640*x^5 + 605675*x^4 - 104636*x^3 + 10850*x^2 - 620*x + 15) / ((x - 1)*(2*x - 1)*(3*x - 1)*(4*x - 1)*(5*x - 1)*(6*x - 1)*(7*x - 1)*(8*x - 1)*(9*x - 1)). - Colin Barker, Jan 28 2015
From Peter Bala, Jan 31 2016: (Start)
a(n) = (x + 1)*( Bernoulli(n + 1, x + 1) - Bernoulli(n + 1, 1) )/(n + 1) - ( Bernoulli(n + 2, x + 1) - Bernoulli(n + 2, 1) )/(n + 2) at x = 9.
a(n) = (1/8!)*Sum_{k = 0..n} (-1)^(k+n)*(k + 10)!*Stirling2(n,k) /((k + 1)*(k + 2)). (End)
MAPLE
seq(add(i*(10-i)^n, i = 1..9), n = 0..20); # Peter Bala, Jan 31 2017
PROG
(PARI) vector(30, n, n--; 8*2^n + 6*4^n + 2*8^n + 7*3^n + 4*6^n + 9^n + 5*5^n + 3*7^n + 9) \\ Colin Barker, Jan 28 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 28 2015
STATUS
approved