OFFSET
0,1
COMMENTS
This is the sequence of sixth terms of "second partial sums of m-th powers".
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Luciano Ancora, Demonstration of formulas
Index entries for linear recurrences with constant coefficients, signature (21,-175,735,-1624,1764,-720).
FORMULA
G.f.: -(8028*x^5 - 13916*x^4 + 8939*x^3 - 2695*x^2 + 385*x - 21) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)). - Colin Barker, Jan 26 2015
From Peter Bala, Jan 31 2016: (Start)
a(n) = (x + 1)*( Bernoulli(n + 1, x + 1) - Bernoulli(n + 1, 1) )/(n + 1) - ( Bernoulli(n + 2, x + 1) - Bernoulli(n + 2, 1) )/(n + 2) at x = 6.
a(n) = (1/5!)*Sum_{k = 0..n} (-1)^(k+n)*(k + 7)!*Stirling2(n,k)/ ((k + 1)*(k + 2)). (End)
MAPLE
seq(add(i*(7 - i)^n, i = 1..6), n = 0..20); # Peter Bala, Jan 31 2017
MATHEMATICA
Table[5 2^n + 3 4^n + 4 3^n + 2 5^n + 6^n + 6, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)
PROG
(PARI) Vec(-(8028*x^5-13916*x^4+8939*x^3-2695*x^2+385*x-21)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)*(6*x-1)) + O(x^100)) \\ Colin Barker, Jan 26 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 26 2015
STATUS
approved