This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254143 Products of any two not necessarily distinct terms of A237424. 6
 1, 4, 7, 16, 28, 34, 37, 49, 67, 136, 148, 238, 259, 268, 334, 337, 367, 469, 667, 1156, 1258, 1336, 1348, 1369, 1468, 2278, 2338, 2359, 2479, 2569, 2668, 3334, 3337, 3367, 3667, 4489, 4669, 6667, 11356, 11458, 12358, 12469, 12478, 13336, 13348, 13468, 13579 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Digits are in nondecreasing order for all terms in decimal representation; a(396) = 1123456789 = 3367 * 333667 is the smallest term containing all nonzero decimal digits: A254323(396) = 123456789; A254323(n) = A137564(a(n)). LINKS Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 Reinhard Zumkeller, First 10000 products of any two terms of A237424 EXAMPLE Initial terms of A237424: 1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334 ... .  n | a(n) = A237424(i) * A237424(j) . ---+------------------------------- .  1 |    1 = 1 * 1   = A237424(1)^2 .  2 |    4 = 1 * 4   = A237424(1) * A237424(2) .  3 |    7 = 1 * 7   = A237424(1) * A237424(3) .  4 |   16 = 4 * 4   = A237424(2)^2 .  5 |   28 = 4 * 7   = A237424(2) * A237424(3) .  6 |   34 = 1 * 34  = A237424(1) * A237424(4) .  7 {   37 = 4 * 37  = A237424(1) * A237424(5) .  8 |   49 = 7 * 7   = A237424(3)^2 .  9 |   67 = 1 * 67  = A237424(1) * A237424(6) . 10 |  136 = 4 * 34  = A237424(2) * A237424(4) . 11 |  148 = 4 * 37  = A237424(2) * A237424(5) . 12 |  238 = 7 * 34  = A237424(3) * A237424(4) . 13 |  259 = 7 * 37  = A237424(3) * A237424(5) . 14 |  268 = 4 * 67  = A237424(2) * A237424(6) . 15 |  334 = 1 * 334 = A237424(1) * A237424(7) . 16 |  337 = 1 * 337 = A237424(1) * A237424(8) . 17 |  367 = 1 * 367 = A237424(1) * A237424(9) . 18 |  469 = 7 * 67  = A237424(3) * A237424(6) . 19 |  667 = 1 * 34  = A237424(1) * A237424(10) . 20 | 1156 = 34 * 34 = A237424(4)^2 see link for more. PROG (Haskell) import Data.Set (empty, fromList, deleteFindMin, union) import qualified Data.Set as Set (null) a254143 n = a254143_list !! (n-1) a254143_list = f a237424_list [] empty where    f xs'@(x:xs) zs s      | Set.null s || x < y = f xs zs' (union s \$ fromList \$ map (* x) zs')      | otherwise           = y : f xs' zs s'      where zs' = x : zs            (y, s') = deleteFindMin s (PARI) listA237424(lim)=my(v=List(), a, t); while(1, for(b=0, a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++) list(lim)=my(v=List(), u=listA237424(lim), t); for(i=1, #u, for(j=1, i, t=u[i]*u[j]; if(t>lim, break); listput(v, t))); Set(v) \\ Charles R Greathouse IV, May 13 2015 CROSSREFS Subsequence of A009994. Cf. A237424, A254323, A137564, A254338 (initial digits), A254339 (final digits). Sequence in context: A164123 A005513 A254323 * A025619 A093210 A133600 Adjacent sequences:  A254140 A254141 A254142 * A254144 A254145 A254146 KEYWORD nonn AUTHOR Reinhard Zumkeller, Jan 28 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 08:36 EDT 2019. Contains 328107 sequences. (Running on oeis4.)