The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A254127 The number of tilings of an n X n rectangle using integer length rectangles with at least one side of length 1, i.e., tiles are of size (1 X i) or (i X 1) with 1<=i<=n. 5
 1, 1, 7, 257, 50128, 50796983, 264719566561, 7063448084710944, 963204439792722969647, 670733745303300958404439297, 2384351527902618144856749327661056, 43263422878945294225852497665519673400479, 4006622856873663241294794301627790673728956619649 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Let R(n) be the set of squares that have vertices at integer coordinates and lie in the region of the plane |x|+|y|<=n+1, and let two squares be independent if they do not share a common edge. Then a(n) is the number of ways to pick a set of independent cell(s) in R(n). (Note R(n) is also known as the Aztec diamond.) LINKS Steve Butler, Table of n, a(n) for n = 0..15 Z. Zhang, Merrifield-Simmons index of generalized Aztec diamond and related graphs, MATCH Commun. Math. Comput. Chem. 56 (2006) 625-636. EXAMPLE a(2)=7 for the following 7 tilings: _ _ _ _ _ _ _ _ _ _ _ _ _ _ |_|_| |_ _| |_|_| | |_| |_| | |_ _| | | | |_|_| |_|_| |_ _| |_|_| |_|_| |_ _| |_|_| PROG # SAGE def matrix_entry(L1, L2, n): ....tally=0 ....for i in range(n-1): ........if (not i in L1) and (not i in L2) and (not i+1 in L1) and (not i+1 in L2): ............tally+=1 ....return 2^tally def a(n): ....index_set={} ....counter=0 ....for C in Combinations(n): ........index_set[counter]=C ........counter+=1 ....current_v=[0]*counter ....current_v[0]=1 ....for t in range(n): ........new_v=[0]*counter ........for i in range(counter): ............for j in range(counter): ................new_v[i]+=current_v[j]*matrix_entry(index_set[i], index_set[j], n) ........current_v=new_v ....return current_v[0] CROSSREFS Cf. A052961, A254124, A254125, A254126. Main diagonal of A254414. Sequence in context: A188421 A165437 A232304 * A203968 A174251 A269576 Adjacent sequences: A254124 A254125 A254126 * A254128 A254129 A254130 KEYWORD nonn AUTHOR Steve Butler, Jan 25 2015 EXTENSIONS a(0)=1 prepended by Alois P. Heinz, Jan 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 2 19:05 EST 2023. Contains 360024 sequences. (Running on oeis4.)