login
A254053
Square array: A(row,col) = 2^(row-1) * ((2*A249745(col))-1) = A064216(A254051(row,col)), read by antidiagonals A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...
10
1, 3, 2, 5, 6, 4, 7, 10, 12, 8, 11, 14, 20, 24, 16, 13, 22, 28, 40, 48, 32, 17, 26, 44, 56, 80, 96, 64, 19, 34, 52, 88, 112, 160, 192, 128, 9, 38, 68, 104, 176, 224, 320, 384, 256, 23, 18, 76, 136, 208, 352, 448, 640, 768, 512, 29, 46, 36, 152, 272, 416, 704, 896, 1280, 1536, 1024, 15, 58, 92, 72, 304, 544, 832, 1408, 1792, 2560, 3072, 2048, 31, 30
OFFSET
1,2
COMMENTS
Shares with A135764 and A253551 the property that A001511(n) = k for all terms n on row k and when going downward in each column, terms grow by doubling.
FORMULA
A(row,col) = A135764(row, A249745(col)). [Is otherwise the same array as A135764, but the column positions have been permuted by A249745.]
A(row,col) = 2^(row-1) * ((2*A249745(col))-1) = 2^(row-1) * A254050(col). [The above expands to this.]
a(n) = A064989(A135765(n)).
As a composition of other permutations:
a(n) = A064216(A254051(n)). [As an array: A(row,col) = A064216(A254051(row,col)).]
EXAMPLE
The top left corner of the array:
1, 3, 5, 7, 11, 13, 17, 19, 9, 23, 29, 15, 31, 37, 41, 43,
2, 6, 10, 14, 22, 26, 34, 38, 18, 46, 58, 30, 62, 74, 82, 86,
4, 12, 20, 28, 44, 52, 68, 76, 36, 92, 116, 60, 124, 148, 164, 172,
8, 24, 40, 56, 88, 104, 136, 152, 72, 184, 232, 120, 248, 296, 328, 344,
16, 48, 80, 112, 176, 208, 272, 304, 144, 368, 464, 240, 496, 592, 656, 688,
...
PROG
(Scheme, several alternative versions)
(define (A254053 n) (A135764bi (A002260 n) (A249745 (A004736 n))))
(define (A254053 n) (* (A000079 (- (A002260 n) 1)) (+ -1 (* 2 (A249745 (A004736 n))))))
(define (A254053 n) (* (A000079 (- (A002260 n) 1)) (A254050 (A004736 n))))
(define (A254053bi row col) (A064216 (A254051bi row col)))
(define (A254053 n) (A254053bi (A002260 n) (A004736 n)))
(define (A254053 n) (A064216 (A254051 n)))
CROSSREFS
Inverse: A254054.
Similar or related permutations: A135764, A253551, A064216, A254051.
Sequence in context: A135764 A253551 A265895 * A360307 A303774 A303776
KEYWORD
nonn,tabl
AUTHOR
Antti Karttunen, Jan 24 2015
STATUS
approved