login
A254038
Prime numbers n such that replacing each digit d in the decimal expansion of n with prime(d) produces a square. Zeros are not allowed.
0
13, 113, 6113, 33113, 93113, 123113, 18237113, 644312113, 749676113, 1222457113, 1346384113, 2343264113, 3282836113, 3959424113, 4412442113, 6241338113, 8932217113, 9165131113, 12165131113, 14198291113, 16224432113, 26199212113, 31259424113, 38785631113, 39232638113
OFFSET
1,1
COMMENTS
a(1)==13(mod 100) and a(n)==113(mod 1000) for n>1.
The corresponding squares are 25, 225, 13225, 55225, 235225, 235225, 2193517225, 1377523225, 17723131713225, 233371117225, 257135197225, 35753137225, ...
EXAMPLE
6113 is in the sequence because 6113 becomes 13225 = 115^2, where 13225 is the concatenation (prime(6),prime(1),prime(1),prime(3))=(13,2,2,5).
MATHEMATICA
f[n_]:=Block[{a=IntegerDigits[n], b="", k=1, l}, l=Length[a]; While[k<l+1, b=StringJoin[b, ToString[Prime[a[[k]]]]]; k++]; ToExpression[b]]; Do[If[IntegerQ[Sqrt[f[Prime[n]]]], Print[Prime[n]]], {n, 1, 10^8}]
pnsQ[n_]:=Module[{c=FromDigits[Flatten[IntegerDigits/@Prime[ IntegerDigits[ n]]]]}, DigitCount[ c, 10, 0]==0&&IntegerQ[Sqrt[c]]]; Join[{13}, Select[ Range[113, 39232639000, 1000], PrimeQ[#]&&pnsQ[#]&]]//Quiet (* Harvey P. Dale, Apr 13 2019 *)
CROSSREFS
Sequence in context: A089569 A048383 A230377 * A221369 A320213 A323037
KEYWORD
nonn,base
AUTHOR
Michel Lagneau, Jan 23 2015
STATUS
approved