login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A254030 a(n) = 1*4^n + 2*3^n + 3*2^n + 4*1^n. 7
10, 20, 50, 146, 470, 1610, 5750, 21146, 79430, 303050, 1169750, 4554746, 17852390, 70322090, 278050550, 1102537946, 4381257350, 17438542730, 69495104150, 277204002746, 1106488342310, 4418973508970, 17654960746550 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

This is the sequence of fourth terms of "second partial sums of m-th powers".

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Luciano Ancora, Demonstration of formulas

Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).

FORMULA

G.f.: -2*(77*x^3-100*x^2+40*x-5) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Jan 26 2015

From Peter Bala, Jan 31 2016: (Start)

a(n) = (x + 1)*( Bernoulli(n + 1, x + 1) - Bernoulli(n + 1, 1) )/(n + 1) - ( Bernoulli(n + 2, x + 1) - Bernoulli(n + 2, 1) )/(n + 2) at x = 4.

a(n) = 1/3!*Sum_{k = 0..n} (-1)^(k+n)*(k + 5)!*Stirling2(n,k)/

((k + 1)*(k + 2)). (End)

MAPLE

seq(add(i*(5 - i)^n, i = 1..4), n = 0..20); # Peter Bala, Jan 31 2017

MATHEMATICA

Table[3 2^n + 2^(2 n) + 2 3^n + 4, {n, 0, 25}] (* Bruno Berselli, Jan 27 2015 *)

PROG

(PARI) Vec(-2*(77*x^3-100*x^2+40*x-5)/((x-1)*(2*x-1)*(3*x-1)*(4*x-1))  + O(x^100)) \\ Colin Barker, Jan 26 2015

CROSSREFS

Cf. A052548, A254028, A254031, A254144, A254145, A254146.

Sequence in context: A250602 A115045 A205879 * A188896 A067192 A030004

Adjacent sequences:  A254027 A254028 A254029 * A254031 A254032 A254033

KEYWORD

nonn,easy

AUTHOR

Luciano Ancora, Jan 26 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 23 12:19 EDT 2019. Contains 328345 sequences. (Running on oeis4.)