%I
%S 512,2992,2992,16544,20868,16544,82064,142800,148332,82064,423232,
%T 1022752,1501724,1048679,423232,2154496,7533252,15946360,16186768,
%U 7777096,2154496,11244672,55225242,167174472,240903042,168988280
%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal median minus antidiagonal median nondecreasing horizontally, vertically and netosw antidiagonally
%C Table starts
%C ......512......2992.......16544........82064.........423232..........2154496
%C .....2992.....20868......142800......1022752........7533252.........55225242
%C ....16544....148332.....1501724.....15946360......167174472.......1776422573
%C ....82064...1048679....16186768....240903042.....3635332193......55074999330
%C ...423232...7777096...168988280...3624943928....77993064012....1716319825801
%C ..2154496..56216811..1798654745..55018824334..1717613401125...54401550145686
%C .11244672.413408572.18976071008.841599218625.37660244542860.1720060910899929
%H R. H. Hardin, <a href="/A253961/b253961.txt">Table of n, a(n) for n = 1..283</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 8] for n>15
%F Empirical for row n:
%F n=1: [same linear recurrence of order 8] for n>15
%e Some solutions for n=2 k=4
%e ..0..0..0..1..0..1....0..0..0..0..0..0....0..0..0..0..0..0....0..0..0..1..1..1
%e ..1..0..1..1..1..1....0..1..1..0..1..0....1..0..0..0..0..0....0..1..1..0..0..0
%e ..1..0..1..1..1..0....0..0..0..0..1..0....1..0..1..0..1..1....1..0..0..1..0..1
%e ..0..0..0..1..0..0....0..0..0..0..1..1....0..0..0..0..1..0....0..1..1..0..1..0
%Y Column 1 and row 1 are A253757
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Jan 20 2015
