login
A253934
Number of (n+2)X(7+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal sum nondecreasing horizontally and vertically
1
709704, 1786831, 4928792, 13179071, 9470400, 17762028, 31663440, 40874791, 67588814, 114752167, 187236938, 308804212, 504175746, 814016078, 1308165346, 2082298220, 3276474924, 5108994892, 7891481786, 12067402454, 18266075120
OFFSET
1,1
COMMENTS
Column 7 of A253935
FORMULA
Empirical: a(n) = 10*a(n-1) -47*a(n-2) +140*a(n-3) -296*a(n-4) +452*a(n-5) -438*a(n-6) +24*a(n-7) +915*a(n-8) -2198*a(n-9) +3243*a(n-10) -3224*a(n-11) +1503*a(n-12) +1890*a(n-13) -6025*a(n-14) +9272*a(n-15) -9928*a(n-16) +7000*a(n-17) -782*a(n-18) -7052*a(n-19) +13941*a(n-20) -17350*a(n-21) +15759*a(n-22) -9296*a(n-23) -282*a(n-24) +10196*a(n-25) -17562*a(n-26) +20272*a(n-27) -17562*a(n-28) +10196*a(n-29) -282*a(n-30) -9296*a(n-31) +15759*a(n-32) -17350*a(n-33) +13941*a(n-34) -7052*a(n-35) -782*a(n-36) +7000*a(n-37) -9928*a(n-38) +9272*a(n-39) -6025*a(n-40) +1890*a(n-41) +1503*a(n-42) -3224*a(n-43) +3243*a(n-44) -2198*a(n-45) +915*a(n-46) +24*a(n-47) -438*a(n-48) +452*a(n-49) -296*a(n-50) +140*a(n-51) -47*a(n-52) +10*a(n-53) -a(n-54) for n>87
Empirical polynomial of degree 17 plus a quasipolynomial of degree 7 with period 24 for n>33 (see link above)
EXAMPLE
Some solutions for n=1
..0..0..0..0..0..0..1..1..1....0..0..0..0..1..0..1..0..1
..0..0..0..1..1..1..1..1..1....0..1..1..1..1..0..1..0..0
..1..0..0..1..0..1..1..1..1....1..1..0..0..0..1..1..0..1
CROSSREFS
Sequence in context: A342796 A253847 A253840 * A083613 A284166 A083614
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 19 2015
STATUS
approved