login
A253894
a(1) = 1, for n > 1, a(n) = 1 + a(A253889(n)).
6
1, 2, 2, 3, 3, 3, 4, 3, 4, 5, 4, 5, 4, 4, 5, 5, 4, 4, 5, 5, 6, 6, 4, 6, 5, 5, 6, 5, 6, 6, 6, 5, 6, 6, 6, 7, 7, 5, 6, 7, 5, 7, 6, 6, 7, 6, 6, 6, 7, 5, 7, 7, 5, 7, 7, 6, 7, 6, 6, 7, 6, 7, 5, 7, 7, 7, 7, 5, 8, 8, 7, 7, 7, 6, 8, 8, 6, 7, 8, 7, 7, 8, 6, 8, 7, 7, 8, 6, 7, 8, 8, 7, 7, 7, 6, 8, 8, 7, 8, 8, 7, 7, 7, 7, 7, 8, 8, 7, 8, 8, 8, 8, 6, 8, 8, 7, 8, 8, 8, 8
OFFSET
1,2
LINKS
FORMULA
a(1) = 1, for n > 1, a(n) = 1 + a(A253889(n)).
a(n) = A070939(A064216(n)). [Binary width of terms of A064216.]
a(n) = A253893(n) + 1.
a(n) = A254044(n) + A254045(n).
PROG
(Scheme, with memoization-macro definec)
(definec (A253894 n) (if (= 1 n) 1 (+ 1 (A253894 (A253889 n)))))
(define (A253894 n) (A070939 (A064216 n))) ;; Alternatively.
CROSSREFS
One more than A253893.
Sum of A254044 and A254045.
Sequence in context: A200648 A264982 A134674 * A000121 A230022 A049846
KEYWORD
nonn
AUTHOR
Antti Karttunen, Jan 22 2015
STATUS
approved