login
A253871
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock diagonal maximum minus antidiagonal minimum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
14
512, 3328, 3328, 20480, 31632, 20480, 119040, 288000, 296960, 119040, 679936, 2546432, 3939840, 2589968, 679936, 3825920, 22201600, 52394496, 50414592, 22729728, 3825920, 21426176, 192159408, 677982208, 1052857184, 659280384
OFFSET
1,1
COMMENTS
Table starts
.......512.........3328..........20480...........119040.............679936
......3328........31632.........288000..........2546432...........22201600
.....20480.......296960........3939840.........52394496..........677982208
....119040......2589968.......50414592.......1052857184........20975776000
....679936.....22729728......659280384......21171373312.......633276761856
...3825920....195774608.....8536982016.....423305690976.....19275379654400
..21426176...1689797632...111370158592....8407169495552....580087707480832
.119525632..14500025360..1445588517376..166630395772512..17553685478957824
.665944064.124544611328.18809857917440.3301057791676672.528547039227200256
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 8*a(n-1) -7*a(n-2) -56*a(n-3) +120*a(n-4) -64*a(n-5)
k=2: [order 17]
k=3: [order 17] for n>18
k=4: [order 80] for n>85
Empirical for row n:
n=1: a(n) = 8*a(n-1) -7*a(n-2) -56*a(n-3) +120*a(n-4) -64*a(n-5)
n=2: [order 19]
n=3: [order 21]
n=4: [order 86] for n>93
EXAMPLE
Some solutions for n=2 k=4
..0..1..1..0..0..0....0..1..1..0..1..1....0..1..0..0..1..0....0..0..1..0..1..1
..0..1..0..0..0..0....0..1..0..0..0..0....1..0..1..0..0..0....1..0..1..1..0..0
..1..1..0..1..1..1....1..0..0..1..1..1....1..0..0..0..1..1....1..1..0..1..1..1
..1..0..0..0..0..1....0..0..1..1..1..0....1..0..1..1..1..1....0..0..0..1..0..1
CROSSREFS
Column 1 and row 1 are A253537
Sequence in context: A254491 A253863 A253856 * A253544 A253537 A254390
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Jan 17 2015
STATUS
approved