login
a(n) = 1 + a(n-2)*a(n-3), with a(0) = a(1) = a(2) = 1.
3

%I #14 Sep 08 2022 08:46:11

%S 1,1,1,2,2,3,5,7,16,36,113,577,4069,65202,2347814,265306939,

%T 153082168429,622891345681347,40613761521380428832,

%U 95353557892558423217593864,25297960567233966143149250083396705,3872666660463510383775257066365338059531886849

%N a(n) = 1 + a(n-2)*a(n-3), with a(0) = a(1) = a(2) = 1.

%H Reinhard Zumkeller, <a href="/A253853/b253853.txt">Table of n, a(n) for n = 0..31</a>

%F a(n+5) == a(n) (mod 2) for all n>=0.

%F a(n+7) == a(n) (mod 7) for all n>=7.

%F a(n) ~ c^(d^n), where c = 1.33114442478885300080049... and d = ((27 - 3*sqrt(69)) / 2)^(1/3) / 3 + ((9 + sqrt(69))/2)^(1/3) / 3^(2/3) = 1.324717957244746... is the root of the equation d^3 = d + 1. - _Vaclav Kotesovec_, Jan 17 2015

%t RecurrenceTable[{a[n]==1+a[n-2]*a[n-3],a[0]==1,a[1]==1,a[2]==1},a,{n,0,20}] (* _Vaclav Kotesovec_, Jan 17 2015 *)

%o (PARI) {a(n) = if( n<3, n>=0, 1 + a(n-2)*a(n-3))};

%o (Haskell)

%o a253853 n = a253853_list !! n

%o a253853_list = 1 : 1 : 1 : map (+ 1)

%o (zipWith (*) a253853_list $ tail a253853_list)

%o -- _Reinhard Zumkeller_, Jan 17 2015

%o (Magma) I:=[1,1,1]; [n le 3 select I[n] else 1 + Self(n-2)*Self(n-3): n in [1..30]]; // _Vincenzo Librandi_, Jan 22 2015

%Y Cf. A007660.

%K nonn

%O 0,4

%A _Michael Somos_, Jan 17 2015