login
A253847
Number of (7+2)X(n+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1
709704, 517697, 233370, 196053, 168884, 225776, 262418, 401447, 624346, 1006728, 1715988, 3110616, 5795860, 11003191, 20882622, 39347462, 73051514, 133035730, 237221478, 414433723, 709529666, 1191477039, 1964567208, 3184664743
OFFSET
1,1
COMMENTS
Row 7 of A253841
FORMULA
Empirical: a(n) = 12*a(n-1) -68*a(n-2) +244*a(n-3) -625*a(n-4) +1208*a(n-5) -1774*a(n-6) +1840*a(n-7) -820*a(n-8) -1600*a(n-9) +5074*a(n-10) -8472*a(n-11) +10179*a(n-12) -8748*a(n-13) +3620*a(n-14) +4428*a(n-15) -13319*a(n-16) +20232*a(n-17) -22544*a(n-18) +18840*a(n-19) -9554*a(n-20) -3072*a(n-21) +15692*a(n-22) -24912*a(n-23) +28280*a(n-24) -24912*a(n-25) +15692*a(n-26) -3072*a(n-27) -9554*a(n-28) +18840*a(n-29) -22544*a(n-30) +20232*a(n-31) -13319*a(n-32) +4428*a(n-33) +3620*a(n-34) -8748*a(n-35) +10179*a(n-36) -8472*a(n-37) +5074*a(n-38) -1600*a(n-39) -820*a(n-40) +1840*a(n-41) -1774*a(n-42) +1208*a(n-43) -625*a(n-44) +244*a(n-45) -68*a(n-46) +12*a(n-47) -a(n-48) for n>75
EXAMPLE
Some solutions for n=1
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0....0..0..0
..0..0..1....0..0..1....0..0..1....0..0..0....0..0..0....0..1..1....0..0..0
..1..0..1....1..0..0....0..0..0....1..0..0....0..0..1....0..0..1....0..0..0
..1..1..0....0..0..0....0..0..0....0..0..1....1..0..0....1..0..1....0..1..0
..0..1..1....1..1..0....0..0..1....1..1..0....1..0..1....1..0..1....0..1..0
..1..1..1....0..0..0....1..0..0....1..1..0....1..0..1....0..0..1....1..1..1
..1..1..1....0..1..1....0..0..0....1..1..1....1..0..0....1..1..1....1..1..1
..1..1..0....1..1..1....0..1..0....1..1..1....1..1..0....0..0..1....0..1..0
..1..0..0....1..0..1....0..0..1....1..1..1....1..1..0....1..0..1....0..0..0
CROSSREFS
Sequence in context: A236277 A251378 A342796 * A253840 A253934 A083613
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 16 2015
STATUS
approved