login
A253842
Number of (2+2)X(n+2) 0..1 arrays with every 3X3 subblock diagonal sum plus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally
1
2440, 6339, 17491, 50462, 127376, 308576, 697720, 1437880, 2829830, 5401152, 9898048, 17515235, 30233597, 50992733, 84202870, 136644718, 218184447, 343428681, 534092439, 821689196, 1251051254, 1887950780, 2828007879
OFFSET
1,1
COMMENTS
Row 2 of A253841
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) -5*a(n-2) +15*a(n-4) -44*a(n-5) +53*a(n-6) -8*a(n-7) -79*a(n-8) +196*a(n-9) -235*a(n-10) +88*a(n-11) +172*a(n-12) -472*a(n-13) +612*a(n-14) -392*a(n-15) -70*a(n-16) +656*a(n-17) -1054*a(n-18) +952*a(n-19) -426*a(n-20) -448*a(n-21) +1210*a(n-22) -1400*a(n-23) +1030*a(n-24) -112*a(n-25) -834*a(n-26) +1288*a(n-27) -1216*a(n-28) +584*a(n-29) +200*a(n-30) -728*a(n-31) +903*a(n-32) -628*a(n-33) +163*a(n-34) +232*a(n-35) -445*a(n-36) +364*a(n-37) -151*a(n-38) -32*a(n-39) +137*a(n-40) -116*a(n-41) +45*a(n-42) -20*a(n-44) +16*a(n-45) -4*a(n-46) for n>58
EXAMPLE
Some solutions for n=4
..0..0..0..0..0..0....1..1..0..0..1..0....0..1..0..0..1..0....0..1..0..0..1..0
..0..0..0..1..1..1....0..0..1..0..1..0....0..0..0..0..1..1....1..0..0..0..0..0
..1..0..0..1..0..0....0..0..1..0..1..1....1..0..1..1..1..1....1..0..0..1..1..1
..1..0..0..1..0..1....1..1..1..1..1..1....1..0..1..1..0..1....0..1..1..1..0..0
CROSSREFS
Sequence in context: A345771 A252047 A083625 * A253835 A253929 A233912
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jan 16 2015
STATUS
approved