login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253831 Number of 2-Motzkin paths with no level steps at height 1. 2
1, 2, 5, 12, 30, 76, 197, 522, 1418, 3956, 11354, 33554, 102104, 319608, 1027237, 3381714, 11371366, 38946892, 135505958, 477781296, 1703671604, 6132978608, 22256615602, 81327116484, 298938112816, 1104473254912, 4098996843500, 15272792557230, 57106723430892, 214202598271360, 805743355591301 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

For n=3 we have 12 paths: H(1)H(1)H(1), H(1)H(1)H(2), H(1)H(2)H(1), H(1)H(2)H(2), H(2)H(1)H(1), H(2)H(1)H(2), H(2)H(2)H(1), H(2)H(2)H(2), UDH(1), UDH(2), H(1)UD, H(2)UD.

LINKS

Robert Israel, Table of n, a(n) for n = 0..5900

FORMULA

G.f.: 1/(1-2*x-x*F(x)), where F(x) is the g.f. of Fine numbers A000957.

G.f.: 2*(2+x)/(4-7*x-6*x^2+x*sqrt(1-4*x)).

a(n) ~ 4^(n+1) / (25*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Apr 21 2015

(54+36*n)*a(n)+(-3+7*n)*a(n+1)+(-60-36*n)*a(n+2)+(36+16*n)*a(n+3)+(-6-2*n)*a(n+4) = 0. - Robert Israel, Apr 29 2015

a(n) = Sum_{m=1..n/2}(Sum_{j=0..n-2*m}(((Sum_{k=0..j}((k+1)*binomial(k+m,k+1)*binomial(2*j-k+m-1,j-k)*(-1)^(k)))*2^(n-j-2*m)*binomial(n-m-j,m))/(j+m)))+2^n. - Vladimir Kruchinin, Mar 11 2016

MAPLE

rec:= (54+36*n)*a(n)+(-3+7*n)*a(n+1)+(-60-36*n)*a(n+2)+(36+16*n)*a(n+3)+(-6-2*n)*a(n+4) = 0:

f:= gfun:-rectoproc({rec, seq(a(i)=[1, 2, 5, 12][i+1], i=0..3)}, a(n), remember):

seq(f(n), n=0..100); # Robert Israel, Apr 29 2015

MATHEMATICA

CoefficientList[Series[1/(1-2*x-x*((1-Sqrt[1-4*x])/(3-Sqrt[1-4*x]))), {x, 0, 20}], x] (* Vaclav Kotesovec, Apr 21 2015 *)

PROG

(Maxima)

a(n):=sum(sum(((sum((k+1)*binomial(k+m, k+1)*binomial(2*j-k+m-1, j-k)*(-1)^(k), k, 0, j))*2^(n-j-2*m)*binomial(n-m-j, m))/(j+m), j, 0, n-2*m), m, 1, n/2)+2^n; /* Vladimir Kruchinin, Mar 11 2016 */

CROSSREFS

Cf. A000957, A217312, A257363.

Sequence in context: A002026 A026938 A086622 * A024851 A188378 A145267

Adjacent sequences:  A253828 A253829 A253830 * A253832 A253833 A253834

KEYWORD

nonn

AUTHOR

José Luis Ramírez Ramírez, Apr 20 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified February 21 07:18 EST 2018. Contains 299390 sequences. (Running on oeis4.)