login
A253824
Numbers n = concat(s,t) such that n = sigma(s) * sigma(t), where sigma(x) is the sum of the divisors of x.
9
540, 2352, 28224, 82890, 737856, 1524096, 1531152, 3429216, 17062920, 22264200, 23268600, 49447728, 104941200, 162496048, 197499456, 267450144, 502334784, 619672032, 2347826040, 2942021520, 4045874976, 4302305280, 9876226752
OFFSET
1,1
EXAMPLE
540 = concat(5,40) -> sigma(5) = 6, sigma(40) = 90 and 6*90 = 540.
2352 = concat(23,52) -> sigma(23) = 24, sigma(52) = 98 and 24*98 = 2352.
28224 = concat(28,224) -> sigma(28) = 56, sigma(224) = 504 and 56*504 = 28222.
82890 = concat(8,2890) -> sigma(8) = 15, sigma(2890) = 5526 and 15*5526 = 82890.
MAPLE
with(numtheory): P:=proc(q) local s, t, k, n;
for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if sigma(s)*sigma(t)=n
then print(n); break; fi; fi; od; od; end: P(10^6);
MATHEMATICA
fQ[n_] := Block[{idn = IntegerDigits@ n, lng = Floor@ Log10@ n}, MemberQ[ Table[ DivisorSigma[1, FromDigits@ Take[ idn, {1, i}]] DivisorSigma[1, FromDigits@ Take[ idn, {i + 1, lng + 1}]], {i, lng}], n]]; k = 1; lst = {}; While[k < 1310000001, If[fQ@ k, AppendTo[ lst, k]; Print@ k]; k++] (* Robert G. Wilson v, Jan 19 2015 *)
PROG
(PARI) isok(n) = {len = #Str(n); for (k=1, len-1, na = n\10^k; nb = n % 10^k; if (nb && (n == sigma(na)*sigma(nb)), return (1)); ); } \\ Michel Marcus, Jan 15 2015
CROSSREFS
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Jan 15 2015
EXTENSIONS
a(8) from Michel Marcus, Jan 15 2015
a(9)-a(17) from Robert G. Wilson v, Jan 18 2015
Missing a(14) and a(19)-a(23) from Giovanni Resta, Jul 17 2015
STATUS
approved