login
A253806
One half of the maximal values of the length of the period for Fibonacci numbers modulo p (A001175(p)) for primes p > 5, according to Wall's Theorems 6 and 7.
1
8, 5, 14, 18, 9, 24, 14, 15, 38, 20, 44, 48, 54, 29, 30, 68, 35, 74, 39, 84, 44, 98, 50, 104, 108, 54, 114, 128, 65, 138, 69, 74, 75, 158, 164, 168, 174
OFFSET
1,1
LINKS
D. D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
FORMULA
a(n) = (prime(n+3) - 1)/2 if prime(n+3) == 1 or 9 (mod 10) and a(n) = (prime(n+3) + 1) if
prime(n+3) == 3 or 7 (mod 10), n >= 1.
EXAMPLE
a(1) = 8 = 7 + 1 because prime(4) = 7 == 7 (mod 10). The length of the period for 7 is 2*8 = 16 = A001175(7).
a(2) = 5 = (11 - 1)/2 because prime(4) = 11 = 1 (mod 10). The length of the period for 11 is 10 = A001175(11).
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jan 16 2015
STATUS
approved