|
|
A253722
|
|
Triangle read by rows: coefficients of the partition polynomials for the reciprocal of the derivative of a power series, g(x)= 1/h'(x).
|
|
1
|
|
|
1, -2, 4, -3, -8, 12, -4, 16, -36, 9, 16, -5, -32, 96, -54, -48, 24, 20, -6, 64, -240, 216, 128, -27, -144, -60, 16, 30, 24, -7
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This entry contains the integer coefficients of the partition polynomials P(n;h_1,h_2,...,h_(n+1)) for the reciprocal g(x) of the derivative of a power series in terms of the coefficients of the power series; i.e., g(x) = 1/[dh(x)/dx] = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = sum[n>=0, (h_1)^(-(n+1)) * P(n;h_1,...,h_(n+1)) * x^n].
This is a signed refinement of reversed A181289. See A145271, A133437, and A133314 for relations to compositional and multiplicative inversions.
|
|
LINKS
|
Table of n, a(n) for n=0..29.
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
|
|
FORMULA
|
For the partition (1')^e(1)*(2')^e(2)*...*(n')^e(n) in P(m;...), the unsigned integer coefficient is [e(2)+e(3)+...+e(n)]! * [2^e(2)*3^e(3)*...*n^e(n)]/[e(2)!*e(3)!*...*e(n)!] with the sign determined by (-1)^[e(1) + m].
The partitions of P(m;..) are formed by adding one to each index of the partitions of m of Abramowitz and Stegun's partition table (p. 831) and appending (1')^e(1) as a factor to obtain a partition of 2m.
Row sums are 1,-2,1,0,0,0,... . Row sums of the unsigned coefficients are A003480.
|
|
EXAMPLE
|
Let h(x) = h_0 + h_1 * x + h_2 * x^2 + ... . Then g(x) = 1/h'(x) = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = (h_1)^(-1) P(0;h_1) + (h_1)^(-2) * P(1;h_1,h_2) * x + (h_1)^(-3) * P(2;h_1,h_2,h_3) * x^2 + ... , and, with h_n = (n'), the first few partition polynomials are
P(0;..)= 1
P(1;..)= -2 (2')
P(2;..)= 4 (2')^2 - 3 (3')(1')
P(3;..)= -8 (2')^3 + 12 (3')(2')(1') - 4 (4')(1')^2
P(4;..)= 16 (2')^4 - 36 (2')^2(3')(1') + [9 (3')^2 + 16 (4')(2')](1')^2 - 5 (5')(1')^3
P(5;..)= -32 (2')^5 + 96 (2')^3(3')(1') + [-54 (3')^2(2') - 48 (4')(2')^2](1')^2 + [24 (3')(4') + 20 (5')(2')](1')^3 - 6 (6')(1')^4
P(6;..)= 64 (2')^6 - 240 (2')^4(3')(1') + [216 (3')^2(2') + 128 (4')(2')^3](1')^2 - [27 (3')^3 + 144 (4')(3')(2') + 60 (5')(2')^2](1')^3 + [16 (4')^2 + 30 (5')(3') + 24 (6')(2')](1')^4 - 7 (7')(1')^5
|
|
CROSSREFS
|
Cf. A181289, A133437, A145271, A133314, A003480.
Sequence in context: A186003 A077624 A077632 * A323506 A302747 A193949
Adjacent sequences: A253719 A253720 A253721 * A253723 A253724 A253725
|
|
KEYWORD
|
sign,tabf
|
|
AUTHOR
|
Tom Copeland, May 02 2015
|
|
STATUS
|
approved
|
|
|
|