login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253722 Triangle read by rows: coefficients of the partition polynomials for the reciprocal of the derivative of a power series, g(x)= 1/h'(x). 1
1, -2, 4, -3, -8, 12, -4, 16, -36, 9, 16, -5, -32, 96, -54, -48, 24, 20, -6, 64, -240, 216, 128, -27, -144, -60, 16, 30, 24, -7 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This entry contains the integer coefficients of the partition polynomials P(n;h_1,h_2,...,h_(n+1)) for the reciprocal g(x) of the derivative of a power series in terms of the coefficients of the power series; i.e., g(x) = 1/[dh(x)/dx] = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 +  ...] = sum[n>=0, (h_1)^(-(n+1)) * P(n;h_1,...,h_(n+1)) * x^n].

This is a signed refinement of reversed A181289. See A145271, A133437, and A133314 for relations to compositional and multiplicative inversions.

LINKS

Table of n, a(n) for n=0..29.

M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].

FORMULA

For the partition (1')^e(1)*(2')^e(2)*...*(n')^e(n) in P(m;...), the unsigned integer coefficient is [e(2)+e(3)+...+e(n)]! * [2^e(2)*3^e(3)*...*n^e(n)]/[e(2)!*e(3)!*...*e(n)!] with the sign determined by (-1)^[e(1) + m].

The partitions of P(m;..) are formed by adding one to each index of the partitions of m of Abramowitz and Stegun's partition table (p. 831) and appending (1')^e(1) as a factor to obtain a partition of 2m.

Row sums are 1,-2,1,0,0,0,... . Row sums of the unsigned coefficients are A003480.

EXAMPLE

Let h(x) = h_0 + h_1 * x + h_2 * x^2 + ... . Then g(x) = 1/h'(x) = 1/[h_1 + 2*h_2 * x + 3*h_3 * x^2 + ...] = (h_1)^(-1) P(0;h_1) + (h_1)^(-2) * P(1;h_1,h_2) * x + (h_1)^(-3) * P(2;h_1,h_2,h_3) * x^2 + ... , and, with h_n = (n'), the first few partition polynomials are

P(0;..)=  1

P(1;..)= -2 (2')

P(2;..)=  4 (2')^2 - 3 (3')(1')

P(3;..)= -8 (2')^3 + 12 (3')(2')(1') - 4 (4')(1')^2

P(4;..)= 16 (2')^4 - 36 (2')^2(3')(1') + [9 (3')^2 + 16 (4')(2')](1')^2 - 5 (5')(1')^3

P(5;..)= -32 (2')^5 + 96 (2')^3(3')(1') + [-54 (3')^2(2') - 48 (4')(2')^2](1')^2 + [24 (3')(4') + 20 (5')(2')](1')^3 - 6 (6')(1')^4

P(6;..)= 64 (2')^6 - 240 (2')^4(3')(1') + [216 (3')^2(2') + 128 (4')(2')^3](1')^2 - [27 (3')^3 + 144 (4')(3')(2') + 60 (5')(2')^2](1')^3 + [16 (4')^2 + 30 (5')(3') + 24 (6')(2')](1')^4 - 7 (7')(1')^5

CROSSREFS

Cf. A181289, A133437, A145271, A133314, A003480.

Sequence in context: A186003 A077624 A077632 * A323506 A302747 A193949

Adjacent sequences:  A253719 A253720 A253721 * A253723 A253724 A253725

KEYWORD

sign,tabf

AUTHOR

Tom Copeland, May 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 01:55 EDT 2021. Contains 343118 sequences. (Running on oeis4.)