This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253688 The total number of pentagons in a variant of pentagon expansion (vertex-to-vertex, two consecutive vertices and one isolated vertex) after n iterations. 6
 1, 4, 10, 21, 39, 64, 94, 129, 171, 218, 272, 331, 397, 468, 546, 629, 719, 814, 916, 1023, 1137, 1256, 1382, 1513, 1651, 1794, 1944, 2099, 2261, 2428, 2602, 2781, 2967, 3158, 3356, 3559, 3769, 3984, 4206, 4433, 4667, 4906, 5152, 5403, 5661, 5924, 6194, 6469, 6751, 7038 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Two star shaped icosagons appearing at n >= 6. See illustration. LINKS Kival Ngaokrajang, Illustration of initial terms FORMULA Conjectures from Colin Barker, Jan 09 2015: (Start) a(n) = (53-(-1)^n-38*n+12*n^2)/4 for n>5. a(n) = 2*a(n-1)-2*a(n-3)+a(n-4) for n>9. G.f.: -x*(2*x^8-2*x^7-2*x^6+2*x^5+4*x^4+3*x^3+2*x^2+2*x+1) / ((x-1)^3*(x+1)). (End) PROG (PARI) { a=1; d1=0; p=a; print1(a, ", "); \\5v3b for(n=2, 100,    if(n<3, d1=2,      if(n<4, d1=3,        if(n<5, d1=5,          if(n<6, d1=7,            if(n<7, d1=7,              if(n<8, d1=5,                if(Mod(n, 2)==0, d1=5, d1=7                )              )            )          )        )      )    );    a=a+d1; p=p+a;    print1(p, ", ") ) } CROSSREFS Cf. A253687 (side-to-side). Sequence in context: A301213 A008121 A253687 * A049480 A216172 A055908 Adjacent sequences:  A253685 A253686 A253687 * A253689 A253690 A253691 KEYWORD nonn AUTHOR Kival Ngaokrajang, Jan 09 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 23:05 EST 2019. Contains 319282 sequences. (Running on oeis4.)