%I
%S 1,10,40,931,3871,91180,379270,8934661,37164541,875505550,3641745700,
%T 85790609191,356853914011,8406604195120,34968041827330,
%U 823761420512521,3426511245164281,80720212606031890,335763133984272160,7909757073970612651,32901360619213507351
%N Indices of centered octagonal numbers (A016754) which are also centered triangular numbers (A005448).
%C Also positive integers y in the solutions to 3*x^2  8*y^2  3*x + 8*y = 0, the corresponding values of x being A253673.
%H Colin Barker, <a href="/A253674/b253674.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,98,98,1,1).
%F a(n) = a(n1)+98*a(n2)98*a(n3)a(n4)+a(n5).
%F G.f.: x*(x^25*x+1)*(x^2+14*x+1) / ((x1)*(x^210*x+1)*(x^2+10*x+1)).
%e 10 is in the sequence because the 10th centered octagonal number is 361, which is also the 16th centered triangular number.
%t LinearRecurrence[{1,98,98,1,1},{1,10,40,931,3871},30] (* _Harvey P. Dale_, Oct 01 2015 *)
%o (PARI) Vec(x*(x^25*x+1)*(x^2+14*x+1)/((x1)*(x^210*x+1)*(x^2+10*x+1)) + O(x^100))
%Y Cf. A005448, A016754, A253673, A253675.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Jan 08 2015
