login
A253652
Triangular numbers that are the product of a triangular number and an oblong number.
3
0, 6, 36, 120, 210, 300, 630, 1176, 2016, 3240, 3570, 4950, 7140, 7260, 10296, 14196, 19110, 23436, 25200, 32640, 39060, 41616, 52326, 61776, 64980, 79800, 97020, 116886, 139656, 145530, 165600, 195000, 228150, 242556, 265356, 304590, 306936, 349866, 353220, 404550, 426426, 461280
OFFSET
1,2
COMMENTS
Supersequence of A083374, because A083374(n)= n^2 * (n^2 - 1)/2 = n*(n+1)/2*n*(n-1), product of triangular number n*(n+1)/2 and oblong number n*(n-1).
EXAMPLE
630 is in the sequence because it is a triangular number (630 = 35*36/2) and 630 = 105*6, with 105 = 14*15/2, triangular number, and 6 = 2*3, oblong number.
PROG
(PARI) {i=0; j=1; print1(0, ", "); while(i<=10^6, k=1; p=2; c=0; while(k<i&&c==0, if(i/k==i\k&&issquare(4*(i/k)+1)&&k>0, c=k); if(c>0, print1(i, ", ")); k+=p; p+=1); i+=j; j+=1)}
KEYWORD
nonn
AUTHOR
Antonio Roldán, Jan 07 2015
STATUS
approved