login
A253623
Expansion of phi(q) * f(q, q^2)^2 / f(q^2, q^4) in powers of q where phi(), f() are Ramanujan theta functions.
1
1, 4, 6, 4, 0, 0, 6, 8, 6, 4, 0, 0, 0, 8, 12, 0, 0, 0, 6, 8, 0, 8, 0, 0, 6, 4, 12, 4, 0, 0, 0, 8, 6, 0, 0, 0, 0, 8, 12, 8, 0, 0, 12, 8, 0, 0, 0, 0, 0, 12, 6, 0, 0, 0, 6, 0, 12, 8, 0, 0, 0, 8, 12, 8, 0, 0, 0, 8, 0, 0, 0, 0, 6, 8, 12, 4, 0, 0, 12, 8, 0, 4, 0, 0
OFFSET
0,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
FORMULA
Expansion of phi(q)^2 * phi(-q^3)^2 / (phi(-q^2) * phi(-q^6)) = psi(q) * psi(-q^3) * (chi(q) * chi(-q^3))^3 in powers of q where phi(), psi(), chi() are Ramanujan theta functions.
Expansion of (2*a(q) + 3*a(q^2) - 2*a(q^4)) / 3 = (b(q) - 2*b(q^4)) * (b(q) - 4*b(q^4)) / (3*b(q^2)) in powers of q where a(), b() are cubic AGM theta functions.
Expansion of eta(q^2)^8 * eta(q^3)^4 * eta(q^12) / (eta(q)^4 * eta(q^4)^3 * eta(q^6)^4) in powers of q.
Euler transform of period 12 sequence [ 4, -4, 0, -1, 4, -4, 4, -1, 0, -4, 4, -2, ...].
Moebius transform is period 12 sequence [ 4, 2, 0, -6, -4, 0, 4, 6, 0, -2, -4, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 48^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A253625.
a(n) = 4*b(n) where b() is multiplicative with b(2^e) = (3/4) * (1 - (-1)^e) if e>0, b(3^e) = 1, b(p^e) = e+1 if p == 1 (mod 6), b(p^e) = (1 + (-1)^e)/2 if p == 5 (mod 6).
G.f.: 1 + Sum_{k>0} (1 + (k mod 2)) * q^k / (1 - q^k + q^(2*k)).
G.f.: Product_{k>0} (1 + q^k) * (1 - q^(2*k)) * (1 - q^(3*k)) * (1 + q^(6*k)) / ((1 + q^(2*k)) * (1 - q^k + q^(2*k)))^3.
a(n) = (-1)^n * A244339(n). a(2*n) = A004016(n). a(2*n + 1) = 4 * A033762(n). a(3*n) = a(n). a(6*n + 1) = 4 * A097195(n). a(6*n + 2) = 6 * A033687(n). a(6*n + 4) = a(6*n = 5) = 0.
a(12*n + 1) = 4 * A123884(n). a(12*n + 2) = 6 * A097195(n). a(12*n + 3) = 4 * A112604(n). a(12*n + 7) = 8 * A121361(n). a(12*n + 9) = 4 * A112605(n).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2*Pi/sqrt(3) = 3.627598... (A186706). - Amiram Eldar, Dec 30 2023
EXAMPLE
G.f. = 1 + 4*x + 6*x^2 + 4*x^3 + 6*x^6 + 8*x^7 + 6*x^8 + 4*x^9 + 8*x^13 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 1 + 2 Sum[ (1 + Mod[k, 2]) q^k / (1 - q^k + q^(2 k)), {k, n}], {q, 0, n}];
a[ n_] := SeriesCoefficient[ EllipticTheta[ 3, 0, q]^2 EllipticTheta[ 4, 0, q^3]^2 / (EllipticTheta[ 4, 0, q^2] EllipticTheta[ 4, 0, q^6]), {q, 0, n}];
a[ n_] := If[ n < 1, Boole[n == 0], 2 (-1)^n Sum[(-1)^(n/d) {2, -1, 0, 1, -2, 0}[[ Mod[ d, 6, 1] ]], {d, Divisors @ n}]];
PROG
(PARI) {a(n) = if( n<1, n==0, 2 * sumdiv(n, d, (n/d%2 + 1) * (-1)^(d\3) * (d%3>0) ))};
(PARI) {a(n) = if( n<1, n==0, 2 * (-1)^n * sumdiv(n, d, (-1)^(n/d) * [0, 2, -1, 0, 1, -2][d%6 + 1]))};
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A)^8 * eta(x^3 + A)^4 * eta(x^12 + A) / (eta(x + A)^4 * eta(x^4 + A)^3 * eta(x^6 + A)^4), n))};
(PARI) {a(n) = my(A, p, e); if( n<1, n==0, A = factor(n); 4 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 3/2*(e%2), if( p==3, 1, if( p%6 == 1, e+1, 1-e%2))))))};
(Magma) A := Basis( ModularForms( Gamma1(12), 1), 83); A[1] + 4*A[2] + 6*A[3] + 4*A[4];
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Jan 06 2015
STATUS
approved