%I #35 Jan 05 2022 10:43:25
%S 2,3,7,53,59,67,89,383,887,2027,3253,5669,7993,8009,9059,53633,54667,
%T 56533,88883,272777777,299222299,383833883,797769997
%N Primes p such that digits of p do not appear in p^4.
%C Primes in A111116.
%C No further terms up to 10^9. - _Felix Fröhlich_, Jan 04 2015
%C No further terms up to 10^10. - _Chai Wah Wu_, Jan 06 2015
%C No further terms up to 2.5*10^13 - _Giovanni Resta_, Jun 01 2015
%C No further terms up to 10^19 (via A111116). - _Michael S. Branicky_, Jan 05 2022
%e 2 and 2^4=16 have no digits in common, hence 2 is in the sequence.
%t Select[Prime[Range[1000000]], Intersection[IntegerDigits[#], IntegerDigits[#^4]]=={} &]
%o (PARI) forprime(p=1, 1e9, dip=digits(p); dipf=digits(p^4); sharedi=0; for(i=1, #dip, for(j=1, #dipf, if(dip[i]==dipf[j], sharedi++; break({2})))); if(sharedi==0, print1(p, ", "))) \\ _Felix Fröhlich_, Jan 04 2015
%o (Python)
%o from sympy import isprime
%o A253574_list = [n for n in range(1,10**6) if set(str(n)) & set(str(n**4)) == set() and isprime(n)]
%o # _Chai Wah Wu_, Jan 06 2015
%Y Cf. A111116.
%Y Cf. primes such that digits of p do not appear in p^k: A030086 (k=2), A030087 (k=3), this sequence (k=4), no terms (k=5), A253575 (k=6), A253576 (k=7), A253577 (k=8), no terms (k=9), A253578 (k=10).
%K nonn,base,more
%O 1,1
%A _Vincenzo Librandi_, Jan 04 2015
%E a(20)-a(23) from _Felix Fröhlich_, Jan 04 2015