login
A253545
Decimal expansion of r = 0.527697..., a boundary ratio separating catenoid and Goldschmidt solutions in the minimal surface of revolution problem.
1
5, 2, 7, 6, 9, 7, 3, 9, 6, 9, 6, 2, 5, 7, 1, 5, 2, 8, 5, 7, 2, 4, 2, 3, 3, 4, 3, 3, 6, 3, 1, 8, 0, 5, 7, 7, 9, 6, 8, 8, 5, 3, 7, 9, 0, 6, 3, 1, 4, 1, 9, 5, 4, 1, 7, 2, 2, 2, 7, 5, 1, 5, 9, 5, 0, 1, 6, 2, 0, 7, 6, 8, 3, 2, 4, 5, 1, 9, 8, 8, 4, 4, 6, 6, 8, 4, 5, 2, 9, 3, 6, 0, 0, 5, 4, 7, 5, 3, 0, 3, 5, 1, 4, 1, 5
OFFSET
0,1
COMMENTS
Consider two circular frames each of diameter D and with a separation of d.
If d/D < r = 0.527697..., then a catenoid gives the absolute minimum area.
If r < d/D < L = 0.66274... (Laplace limit), there are 3 minimal surfaces of revolution passing through the frames: 2 catenoids and the so-called Goldschmidt discontinuous solution consisting of the 2 disks.
If d/D > L, there remains only the Goldschmidt solution.
LINKS
Robert Ferréol's MathCurve, Catenoid
Eric Weisstein's MathWorld, Laplace Limit
Eric Weisstein's MathWorld, Minimal Surface of Revolution
FORMULA
arccosh(u)/u, where u = 1.21136... is solution to u*sqrt(u^2-1) + arccosh(u) - u^2 = 0.
Solution of 2*cosh((x^2+1)/2) = x+1/x. - Robert FERREOL, Feb 07 2019
EXAMPLE
0.5276973969625715285724233433631805779688537906314195417222751595...
MATHEMATICA
digits = 105; u0 = u /. FindRoot[u*Sqrt[u^2-1] + ArcCosh[u] - u^2 == 0, {u, 6/5}, WorkingPrecision -> digits+5]; r = ArcCosh[u0]/u0; RealDigits[r, 10, digits] // First
CROSSREFS
Cf. A033259 (Laplace limit).
Sequence in context: A204899 A354827 A364521 * A195343 A074454 A256110
KEYWORD
nonn,cons,easy
AUTHOR
STATUS
approved