login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A253495 T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally 14
81, 414, 414, 1388, 1377, 1388, 3639, 3090, 2640, 3639, 8501, 5386, 4196, 4720, 8501, 19701, 9679, 6476, 6931, 9654, 19701, 48293, 20975, 11937, 10477, 13528, 22236, 48293, 126357, 51167, 25715, 18526, 19475, 29370, 55362, 126357, 346997, 133311 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Table starts

.....81.....414....1388....3639....8501...19701...48293..126357...346997

....414....1377....3090....5386....9679...20975...51167..133311...362399

...1388....2640....4196....6476...11937...25715...60586..151946...399466

...3639....4720....6931...10477...18526...37469...82676..194708...483572

...8501....9654...13528...19475...32652...61955..127898..281402...653210

..19701...22236...29370...40117...63550..113573..220988..457436...995132

..48293...55362...68992...89339..133284..224747..415106..817442..1686914

.126357..145428..172050..211597..296566..470909..827156.1561268..3094292

.346997..397002..449608..527555..694572.1034675.1722698.3120362..5980490

.982677.1114476.1219050.1373797.1704910.2376533.3728108.6452876.11967212

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..362

FORMULA

Empirical for column k:

k=1: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>10

k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>8

k=3: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>7

k=4: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>6

k=5: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>6

k=6: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>6

k=7: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>6

Empirical for row n:

n=1: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>10

n=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>9

n=3: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>9

n=4: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>9

n=5: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>9

n=6: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>9

n=7: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>9

Empirical for column k:

k=1: a(n) = 400*3^(n-3) + 205*2^(n-1) + 2917 for n>7

k=2: a(n) = 49*3^(n-1) + 291*2^(n-1) + 1017 for n>5

k=3: a(n) = 49*3^(n-1) + 494*2^(n-1) + 1655 for n>4

k=4: a(n) = 49*3^(n-1) + 794*2^(n-1) + 2802 for n>3

k=5: a(n) = 49*3^(n-1) + 1435*2^(n-1) + 5723 for n>3

k=6: a(n) = 49*3^(n-1) + 2730*2^(n-1) + 14306 for n>3

k=7: a(n) = 49*3^(n-1) + 5322*2^(n-1) + 38777 for n>3

k=8: a(n) = 49*3^(n-1) + 10506*2^(n-1) + 109337 for n>3

k=9: a(n) = 49*3^(n-1) + 20874*2^(n-1) + 315257 for n>3

Empirical for row n:

n=1: a(n) = 400*3^(n-3) + 205*2^(n-1) + 2917 for n>7

n=2: a(n) = 400*3^(n-3) + 271*2^(n-1) + 1423 for n>6

n=3: a(n) = 400*3^(n-3) + 415*2^(n-1) + 1626 for n>6

n=4: a(n) = 400*3^(n-3) + 738*2^(n-1) + 3044 for n>6

n=5: a(n) = 400*3^(n-3) + 1386*2^(n-1) + 6794 for n>6

n=6: a(n) = 400*3^(n-3) + 2682*2^(n-1) + 16940 for n>6

n=7: a(n) = 400*3^(n-3) + 5274*2^(n-1) + 45170 for n>6

n=8: a(n) = 400*3^(n-3) + 10458*2^(n-1) + 125444 for n>6

n=9: a(n) = 400*3^(n-3) + 20826*2^(n-1) + 357434 for n>6

EXAMPLE

Some solutions for n=4 k=4

..1..1..2..1..1....0..2..2..2..2....0..0..2..1..1....0..2..1..2..1

..1..0..1..0..0....1..0..0..0..0....1..0..1..0..0....1..2..1..2..1

..1..0..1..0..0....2..1..1..1..1....2..1..2..1..1....0..1..0..1..0

..2..1..2..1..1....1..0..0..0..0....2..1..2..1..1....0..1..0..1..0

..1..0..1..0..2....1..0..0..1..2....1..0..1..0..0....0..1..0..2..2

CROSSREFS

Column 1 and row 1 are A253449

Sequence in context: A237182 A237176 A102741 * A253456 A236155 A253449

Adjacent sequences:  A253492 A253493 A253494 * A253496 A253497 A253498

KEYWORD

nonn,tabl

AUTHOR

R. H. Hardin, Jan 02 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 18 08:57 EDT 2019. Contains 326077 sequences. (Running on oeis4.)