Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #7 Dec 12 2018 14:25:11
%S 325,324,337,372,444,588,876,1452,2604,4908,9516,18732,37164,74028,
%T 147756,295212,590124,1179948,2359596,4718892,9437484,18874668,
%U 37749036,75497772,150995244,301990188,603980076,1207959852,2415919404,4831838508
%N Number of (6+1) X (n+1) 0..1 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally, vertically and ne-to-sw antidiagonally.
%H R. H. Hardin, <a href="/A253440/b253440.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-1) - 2*a(n-2) for n>5.
%F Empirical: a(n) = 9*2^(n-1) + 300 for n>3.
%F Empirical g.f.: x*(325 - 651*x + 15*x^2 + 9*x^3 + 2*x^4) / ((1 - x)*(1 - 2*x)). - _Colin Barker_, Dec 12 2018
%e Some solutions for n=4:
%e ..1..1..0..0..0....1..1..1..1..1....0..1..0..0..0....1..1..1..1..0
%e ..1..1..0..0..0....1..1..1..1..1....0..1..0..0..0....1..1..1..1..0
%e ..1..1..0..0..0....1..1..1..1..1....0..1..0..0..0....1..1..1..1..0
%e ..1..1..0..0..0....1..1..1..1..1....0..1..0..0..0....1..1..1..1..0
%e ..1..1..0..0..0....1..1..1..1..1....0..1..0..0..0....1..1..1..1..0
%e ..1..1..0..0..0....1..1..1..1..1....0..1..0..0..0....1..1..1..1..0
%e ..1..1..0..0..1....1..1..1..1..1....0..1..0..0..1....0..0..0..0..0
%Y Row 6 of A253435.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 31 2014