login
Complement of the Beatty sequence for sqrt(Pi*phi), where phi is the golden ratio.
2

%I #13 Jan 10 2017 02:38:28

%S 1,3,5,7,8,10,12,14,16,17,19,21,23,25,26,28,30,32,34,35,37,39,41,43,

%T 44,46,48,50,52,53,55,57,59,61,62,64,66,68,70,71,73,75,77,79,80,82,84,

%U 86,88,89,91,93,95,97,98,100,102,104,106,107,109,111,113,115

%N Complement of the Beatty sequence for sqrt(Pi*phi), where phi is the golden ratio.

%H Colin Barker, <a href="/A253301/b253301.txt">Table of n, a(n) for n = 1..10000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BeattySequence.html">Beatty Sequence</a>

%F a(n) = floor(n*sqrt(Pi*phi)/(sqrt(Pi*phi)-1)), where phi is the golden ratio.

%t Table[Floor[n*Sqrt[Pi*GoldenRatio]/(Sqrt[Pi*GoldenRatio] - 1)], {n, 1, 100}] (* _G. C. Greubel_, Jan 09 2017 *)

%o (PARI) phi = (sqrt(5)+1)/2; vector(100, n, floor(n*sqrt(Pi*phi) / (sqrt(Pi*phi)-1)))

%Y Cf. A000796 (Pi), A001622 (golden ratio, phi), A094886 (Pi*phi), A252169.

%K nonn

%O 1,2

%A _Colin Barker_, Dec 30 2014