The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A253265 The number of tilings of 2 X n boards with squares of 2 colors and dominoes of 3 colors. 2
 1, 7, 82, 877, 9565, 103960, 1130701, 12296275, 133724242, 1454268793, 15815379409, 171994465072, 1870463946217, 20341557798991, 221217294787570, 2405769114915733, 26163076626035413, 284527128680078536, 3094272440210485525, 33650646877362841531, 365955505581792121138 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The numerator in Formula (3) in the JIS article should be 1-b*x, not 1-x. LINKS G. C. Greubel, Table of n, a(n) for n = 0..950 M. Katz, C. Stenson, Tiling a (2 x n)-board with squares and dominoes, JIS 12 (2009) 09.2.2, Table 1, a=2, b=3. Index entries for linear recurrences with constant coefficients, signature (10,12,-27). FORMULA G.f.: ( 1-3*x ) / ( 1 - 10*x - 12*x^2 + 27*x^3 ). MAPLE seq(coeff(series((1-3*x)/(1-10*x-12*x^2+27*x^3), x, n+1), x, n), n = 0..30); # G. C. Greubel, Oct 28 2019 MATHEMATICA CoefficientList[Series[(1-3x)/(1-10x-12x^2+27x^3), {x, 0, 20}], x] (* Michael De Vlieger, Sep 30 2015 *) LinearRecurrence[{10, 12, -27}, {1, 7, 82}, 30] (* Harvey P. Dale, Dec 30 2015 *) PROG (PARI) my(x='x+O('x^30)); Vec((1-3*x)/(1-10*x-12*x^2+27*x^3)) \\ G. C. Greubel, Oct 28 2019 (MAGMA) R:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-3*x)/(1-10*x-12*x^2+27*x^3) )); // G. C. Greubel, Oct 28 2019 (Sage) def A253265_list(prec):     P. = PowerSeriesRing(ZZ, prec)     return P((1-3*x)/(1-10*x-12*x^2+27*x^3)).list() A253265_list(30) # G. C. Greubel, Oct 28 2019 (GAP) a:=[1, 7, 82];; for n in [4..30] do a[n]:=10*a[n-1]+12*a[n-2] -27*a[n-3]; od; a; # G. C. Greubel, Oct 28 2019 CROSSREFS Cf. A030186 (pieces of a single color), A102436. Sequence in context: A112119 A058575 A285062 * A304870 A191804 A243672 Adjacent sequences:  A253262 A253263 A253264 * A253266 A253267 A253268 KEYWORD nonn,easy AUTHOR R. J. Mathar, Sep 30 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 20:22 EDT 2020. Contains 337432 sequences. (Running on oeis4.)