login
A253232
Smallest of five consecutive primes in arithmetic progression with common difference 90 and equal digit sums.
1
61, 83, 89, 593, 1399, 2063, 2287, 2351, 2441, 3491, 5081, 5171, 5479, 6599, 9497, 12073, 16561, 17569, 21377, 23099, 23189, 28573, 29063, 32143, 36293, 36497, 36587, 39569, 49279, 61291, 62383, 65449, 66373, 71167, 72379, 75347, 81457, 88591, 92377, 94261, 104369
OFFSET
1,1
COMMENTS
90 is the smallest common difference (d) to get a set of five consecutive primes in arithmetic progression {p, p+d, p+2d, p+3d, p+4d} having digit sums equal; for p < prime(10^5).
LINKS
EXAMPLE
a(1) = 61: 61+90 = 151; 151+90 = 241; 241+90 = 331; 331+90 = 421; all five are prime. Their digit sums 6+1 = 1+5+1 = 2+4+1 = 3+3+1 = 4+2+1 = 7 are all equal.
a(2) = 83: 83+90 = 173; 173+90 = 263; 263+90 = 353; 353+90 = 443; all five are prime. Their digit sums 8+3 = 1+7+3 = 2+6+3 = 3+5+3 = 4+4+3 = 11 are all equal.
MATHEMATICA
A253232 = {}; Do[d = 90; k = Prime[n]; k1 = k + d; k2 = k + 2 d; k3 = k + 3 d; k4 = k + 4 d; s = Plus @@ IntegerDigits[k]; s1 = Plus @@ IntegerDigits[k1]; s2 = Plus @@ IntegerDigits[k2]; s3 = Plus @@ IntegerDigits[k3]; s4 = Plus @@ IntegerDigits[k4]; If[PrimeQ[k1] && PrimeQ[k2] && PrimeQ[k3] && PrimeQ[k4] && s == s1 && s1 == s2 && s2 == s3 && s3 == s4, AppendTo[A253232, k]], {n, 50000}]; A253232
cd90Q[p_]:=Module[{q=p+90, r=p+180, s=p+270, t=p+360}, AllTrue[{p, q, r, s, t}, PrimeQ] && Length[Union[Total/@(IntegerDigits/@{p, q, r, s, t})]]==1]; Select[ Prime[ Range[ 10000]], cd90Q] (* Harvey P. Dale, May 13 2022 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
K. D. Bajpai, Dec 29 2014
STATUS
approved