login
A253208
a(n) = 4^n + 3.
8
4, 7, 19, 67, 259, 1027, 4099, 16387, 65539, 262147, 1048579, 4194307, 16777219, 67108867, 268435459, 1073741827, 4294967299, 17179869187, 68719476739, 274877906947, 1099511627779, 4398046511107, 17592186044419, 70368744177667, 281474976710659
OFFSET
0,1
COMMENTS
Subsequence of A226807.
FORMULA
G.f.: (4 - 13*x)/((1 - x)*(1 - 4*x)).
a(n) = 5*a(n-1) - 4*a(n-2) for n > 1.
From Elmo R. Oliveira, Nov 14 2023: (Start)
a(n) = 4*a(n-1) - 9 with a(0) = 4.
E.g.f.: exp(4*x) + 3*exp(x). (End)
MATHEMATICA
Table[4^n + 3, {n, 0, 30}] (* or *) CoefficientList[Series[(4 - 13 x) / ((1 - x) (1 - 4 x)), {x, 0, 40}], x]
PROG
(Magma) [4^n+3: n in [0..30]];
(PARI) a(n)=4^n+3 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
Cf. Numbers of the form k^n+k-1: A000057 (k=2), A168607 (k=3), this sequence (k=4), A242329 (k=5), A253209 (k=6), A253210 (k=7), A253211 (k=8), A253212 (k=9), A253213 (k=10).
Sequence in context: A220011 A305034 A133264 * A275389 A127415 A045548
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Dec 29 2014
STATUS
approved