login
A253167
Numbers n such that the sum of the pentagonal numbers P(n), P(n+1), P(n+2) and P(n+3) is equal to the octagonal number O(m) for some m.
2
1, 871, 2841, 1006671, 3280049, 1161698999, 3785175241, 1340599639711, 4368088949601, 1547050822529031, 5040770862665849, 1785295308598863599, 5817045207427441681, 2060229239072266065751, 6712865128600405035561, 2377502756594086441014591
OFFSET
1,2
COMMENTS
Also positive integers x in the solutions to 12*x^2-6*y^2+32*x+4*y+36 = 0, the corresponding values of y being A253168.
FORMULA
a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(x^4+150*x^3-816*x^2-870*x-1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).
EXAMPLE
1 is in the sequence because P(1)+P(2)+P(3)+P(4) = 1+5+12+22 = 40 = O(4).
PROG
(PARI) Vec(x*(x^4+150*x^3-816*x^2-870*x-1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 29 2014
STATUS
approved