OFFSET
1,2
COMMENTS
Also positive integers x in the solutions to 12*x^2-6*y^2+32*x+4*y+36 = 0, the corresponding values of y being A253168.
LINKS
Colin Barker, Table of n, a(n) for n = 1..653
Index entries for linear recurrences with constant coefficients, signature (1,1154,-1154,-1,1).
FORMULA
a(n) = a(n-1)+1154*a(n-2)-1154*a(n-3)-a(n-4)+a(n-5).
G.f.: x*(x^4+150*x^3-816*x^2-870*x-1) / ((x-1)*(x^2-34*x+1)*(x^2+34*x+1)).
EXAMPLE
1 is in the sequence because P(1)+P(2)+P(3)+P(4) = 1+5+12+22 = 40 = O(4).
PROG
(PARI) Vec(x*(x^4+150*x^3-816*x^2-870*x-1)/((x-1)*(x^2-34*x+1)*(x^2+34*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 29 2014
STATUS
approved