%I #10 Nov 29 2018 12:46:38
%S 2,4,16,22,32,44,86,88,98,298,316,452,602,638,658,736,862,868,896,
%T 1276,1358,1586,1768,1996,2342,2366,2444,2452,2542,2788,2902,3242,
%U 3448,3704,3718,3998,4376,4552,4928,5422,5504,5566,5608,5644,5728,5768,5776,6664,6934,6946,7708,7858
%N Numbers n such that n + 15, n^2 + 15 and n^3 + 15 are prime.
%e With n=2, n+15 (17), n^2+15 (19) and n^3+15 (23) are all prime.
%t p = 15; Select[Range[2, 20000, 2], PrimeQ[p + #^3] && PrimeQ[p + #^2] && PrimeQ[p + #] &]
%t Select[Range[2,8000,2],AllTrue[#^Range[3]+15,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* _Harvey P. Dale_, Nov 29 2018 *)
%o (PARI) isok(n) = isprime(n+15) && isprime(n^2 + 15) && isprime(n^3 + 15); \\ _Michel Marcus_, Dec 28 2014
%Y Subsequence of A253142, A086303 and A121982.
%K nonn
%O 1,1
%A _Zak Seidov_, Dec 27 2014