login
A253112
Number of (n+2)X(1+2) nonnegative integer arrays with all values the knight distance from the upper left minus as much as 2, with successive minimum path knight move differences either 0 or +1, and any unreachable value zero.
1
53, 272, 1342, 4619, 14541, 34786, 113891, 233392, 525617, 853971, 2327441, 3609337, 6243433, 8189113, 18881723, 25291483, 37714007, 44777219, 90840301, 112309445, 153843349, 173399285, 320621751, 377531207, 490093227, 535756183
OFFSET
1,1
COMMENTS
Column 1 of A253119.
LINKS
FORMULA
Empirical: a(n) = a(n-1) +8*a(n-4) -8*a(n-5) -28*a(n-8) +28*a(n-9) +56*a(n-12) -56*a(n-13) -70*a(n-16) +70*a(n-17) +56*a(n-20) -56*a(n-21) -28*a(n-24) +28*a(n-25) +8*a(n-28) -8*a(n-29) -a(n-32) +a(n-33) for n>43.
Empirical for n mod 4 = 0: a(n) = (1/2880)*n^8 + (1/35)*n^7 + (169/160)*n^6 + (91/12)*n^5 - (170437/960)*n^4 - (4291/60)*n^3 + (547067/45)*n^2 - (1847017/42)*n - 22525 for n>10.
Empirical for n mod 4 = 1: a(n) = (1/2880)*n^8 + (1/35)*n^7 + (1493/1440)*n^6 + (871/120)*n^5 - (506711/2880)*n^4 + (3067/30)*n^3 + (1371401/120)*n^2 - (11084513/210)*n + (371127/16) for n>10.
Empirical for n mod 4 = 2: a(n) = (1/2880)*n^8 + (13/504)*n^7 + (85/96)*n^6 + (2389/720)*n^5 - (50539/320)*n^4 + (93863/144)*n^3 + (142985/18)*n^2 - (26157409/420)*n + (399767/4) for n>10.
Empirical for n mod 4 = 3: a(n) = (1/2880)*n^8 + (79/2520)*n^7 + (187/160)*n^6 + (7409/720)*n^5 - (190777/960)*n^4 - (235699/720)*n^3 + (5757523/360)*n^2 - (52286503/840)*n + (146121/16) for n>10
EXAMPLE
Some solutions for n=4:
..0..3..2....0..3..1....0..2..1....0..2..1....0..2..1....0..1..1....0..1..1
..3..2..1....2..4..1....2..3..1....1..2..1....1..2..0....2..2..1....1..2..0
..2..1..3....2..1..3....1..1..2....1..1..2....1..1..2....1..1..2....1..1..2
..2..2..2....3..2..3....2..2..2....2..1..2....2..1..1....2..1..1....2..1..1
..2..3..2....2..2..2....1..2..1....1..1..2....1..2..1....1..2..2....1..2..1
..2..2..2....3..4..3....2..2..2....2..3..2....2..2..1....2..2..2....1..2..2
Knight distance matrix for n=4:
..0..3..2
..3..4..1
..2..1..4
..3..2..3
..2..3..2
..3..4..3
CROSSREFS
Sequence in context: A140851 A337428 A253119 * A211146 A155700 A108878
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 27 2014
STATUS
approved