

A253107


Number of Eulerian cycles in a lattice graph bounded by the eight equations x+y=2n, x+y=2n, xy=2n, xy=2n, x=12n, x=2n1, y=12n, and y=2n1 (Aztec Diamond graph).


1



1, 40, 132160, 33565612800, 641149227424067584, 911979417737022109612195840, 96089134887576552087085389330051891200, 747578503218020593242369202628724536730457230016512
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..8.
P. Audibert, Mathematics for Informatics and Computer Science, Wiley, 2010, p. 832.
Muhammad Kholilurrohman and Shinichi Minato, An Efficient Algorithm for Enumerating Eulerian Paths, Hokkaido University, Division of Computer Science, TCS Technical Reports, TCSTRA1477, Oct. 2014.
Eric Weisstein's World of Mathematics, Eulerian Cycle


CROSSREFS

Sequence in context: A223103 A186166 A151605 * A300842 A159428 A115482
Adjacent sequences: A253104 A253105 A253106 * A253108 A253109 A253110


KEYWORD

nonn


AUTHOR

Muhammad Kholilurrohman, Dec 26 2014


STATUS

approved



