login
A252958
Number of (n+2) X (5+2) 0..4 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
1251, 385, 605, 1027, 1747, 3315, 6091, 11027, 21661, 41149, 76195, 151665, 291595, 549597, 1095917, 2131051, 4059427, 8119947, 15887899, 30599099, 61205869, 120548245, 233864947, 468315993, 925888219, 1808629749, 3620886461
OFFSET
1,1
COMMENTS
Column 5 of A252961.
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) -2*a(n-2) +3*a(n-3) -37*a(n-4) +20*a(n-5) +87*a(n-6) -23*a(n-7) -8*a(n-8) -423*a(n-9) +617*a(n-10) -244*a(n-11) +70*a(n-12) -105*a(n-13) +42*a(n-14) for n>16.
EXAMPLE
Some solutions for n=2
..0..1..1..2..2..3..3....0..1..1..2..1..1..0....0..1..0..0..2..0..0
..4..4..3..3..0..0..1....3..1..3..3..1..3..3....3..3..0..3..3..0..3
..2..0..0..1..1..2..2....1..1..0..1..1..2..1....2..0..0..1..0..0..2
..1..1..4..4..3..3..0....0..1..1..0..1..1..2....0..4..0..0..1..0..0
CROSSREFS
Cf. A252961.
Sequence in context: A035762 A107558 A254287 * A288354 A186477 A045186
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 25 2014
STATUS
approved