login
A252957
Number of (n+2)X(4+2) 0..4 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order
1
603, 249, 369, 674, 1242, 2201, 4275, 8202, 15026, 29799, 58371, 108338, 217140, 428327, 803859, 1614920, 3205212, 6055415, 12197421, 24269712, 46190180, 93054741, 185677773, 355292744, 716230710, 1430822693, 2753038317, 5547393902
OFFSET
1,1
COMMENTS
Column 4 of A252961
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) -6*a(n-2) +5*a(n-3) -40*a(n-4) +57*a(n-5) +67*a(n-6) -110*a(n-7) +15*a(n-8) -415*a(n-9) +1040*a(n-10) -861*a(n-11) +314*a(n-12) -175*a(n-13) +147*a(n-14) -42*a(n-15) for n>17
EXAMPLE
Some solutions for n=2
..0..1..0..0..1..0....0..1..1..2..2..3....0..0..1..0..0..2....0..1..1..2..2..0
..1..1..2..1..1..2....4..0..0..1..1..4....2..3..3..0..3..3....2..3..3..1..1..4
..3..1..1..2..1..1....2..3..3..0..0..2....4..4..0..0..1..0....4..0..0..3..3..2
..0..1..0..0..1..0....1..4..4..3..3..0....0..0..2..0..0..1....1..2..2..0..0..1
CROSSREFS
Sequence in context: A218180 A218521 A145331 * A348077 A066785 A178032
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 25 2014
STATUS
approved