login
A252952
T(n,k)=Number of (n+2)X(k+2) 0..2 arrays with every consecutive three elements in every row, column and nw-se diagonal having exactly two distinct values, and new values 0 upwards introduced in row major order
8
198, 747, 747, 2970, 2988, 2970, 11943, 12915, 12915, 11943, 48024, 57978, 64242, 57978, 48024, 193059, 262494, 334197, 334197, 262494, 193059, 776160, 1192149, 1784781, 2101338, 1784781, 1192149, 776160, 3120579, 5419521, 9627372, 13646115
OFFSET
1,1
COMMENTS
Table starts
......198.......747.......2970........11943.........48024..........193059
......747......2988......12915........57978........262494.........1192149
.....2970.....12915......64242.......334197.......1784781.........9627372
....11943.....57978.....334197......2101338......13646115........90331596
....48024....262494....1784781.....13646115.....110574774.......919418760
...193059...1192149....9627372.....90331596.....919418760......9729661266
...776160...5419521...52118784....603797472....7763464440....104852356227
..3120579..24648309..282725568...4053062745...66003601788...1141808774769
.12546540.112122162.1535104449..27261133281..563165929260..12498557877783
.50444415.510068277.8338827870.183573601551.4814005980501.137122697754648
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 6*a(n-1) -9*a(n-2) +4*a(n-3) +2*a(n-4) -6*a(n-5) +4*a(n-6)
k=2: [order 22]
k=3: [order 61] for n>63
EXAMPLE
Some solutions for n=3 k=4
..0..0..1..1..2..1....0..0..1..1..0..0....0..0..1..0..0..1....0..0..1..0..1..0
..0..2..2..1..2..2....2..1..1..2..1..2....1..0..1..1..2..1....2..0..2..2..0..0
..1..2..2..0..0..1....0..1..0..1..1..2....0..2..2..0..2..0....2..1..1..2..1..1
..1..0..0..1..0..1....2..2..1..1..2..1....1..0..1..0..1..1....1..0..1..1..0..1
..0..2..0..0..2..2....0..1..0..0..1..1....1..0..1..1..2..1....2..0..0..2..0..2
CROSSREFS
Sequence in context: A066218 A304614 A357076 * A252945 A158222 A156771
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 25 2014
STATUS
approved