Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #4 Dec 24 2014 15:37:28
%S 384,2793,2793,19320,30453,19320,139968,306680,306680,139968,997740,
%T 3255537,4385530,3255537,997740,7214139,33858062,66702186,66702186,
%U 33858062,7214139,51847038,357165303,990142582,1470299799,990142582
%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every consecutive three elements in every row and column having exactly two distinct values, and new values 0 upwards introduced in row major order
%C Table starts
%C ......384.......2793........19320.........139968.........997740........7214139
%C .....2793......30453.......306680........3255537.......33858062......357165303
%C ....19320.....306680......4385530.......66702186......990142582....14924920644
%C ...139968....3255537.....66702186.....1470299799....31496378270...686625400736
%C ...997740...33858062....990142582....31496378270...973958225703.30642385604286
%C ..7214139..357165303..14924920644...686625400736.30642385604286
%C .51847038.3740990254.223188511528.14835814827267
%H R. H. Hardin, <a href="/A252904/b252904.txt">Table of n, a(n) for n = 1..60</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 18]
%e Some solutions for n=2 k=4
%e ..0..0..1..0..1..0....0..1..1..0..0..1....0..0..1..0..1..0....0..0..1..0..0..2
%e ..1..1..2..1..2..2....1..2..2..1..2..1....1..1..2..1..1..0....2..3..3..1..1..0
%e ..0..0..2..0..2..0....1..2..2..0..0..3....1..0..1..0..0..3....0..0..1..0..1..0
%e ..0..1..0..0..3..0....2..1..1..0..0..1....2..0..2..0..0..3....0..0..3..0..0..3
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 24 2014