This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252890 Number of times the greatest prime factor of n^2 + 1 is a factor in all numbers <= n. 1
 1, 1, 2, 1, 1, 1, 4, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 6, 1, 1, 4, 1, 3, 1, 1, 2, 7, 1, 1, 2, 1, 1, 1, 1, 2, 1, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 6, 1, 3, 4, 1, 2, 2, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The greatest prime factor is counted with multiplicity (see the example). a(n)=1 iff n^2 + 1 is prime. LINKS Michel Lagneau, Table of n, a(n) for n = 1..10000 EXAMPLE a(7)=4 because 7^2 + 1 = 50 and 5 is 4 times a factor: 2^2+1 = 5; 3^2+1 = 10 = 2*5; 7^2+1 = 50 = 2*5*5 (two times). MAPLE with(numtheory): with(padic, ordp): f:= proc(n) local p , q, n0;   q:=factorset(n^2+1); n0:=nops(q); p:= q[n0];   add(ordp(k^2+1, p), k=1..n); end proc: seq(f(n), n=1.. 100); # Using code from Robert Israel adapted for this sequence. See A078897. CROSSREFS Cf. A089120, A014442, A078897. Sequence in context: A133910 A066441 A300384 * A173398 A104404 A162512 Adjacent sequences:  A252887 A252888 A252889 * A252891 A252892 A252893 KEYWORD nonn AUTHOR Michel Lagneau, Dec 24 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 19 06:41 EDT 2019. Contains 323386 sequences. (Running on oeis4.)