login
A252862
Initial members of prime sextuples (n, n+2, n+6, n+8, n+18, n+20).
1
11, 18041, 97841, 165701, 392261, 663581, 1002341, 1068701, 1155611, 1329701, 1592861, 1678751, 1718861, 1748471, 2159231, 2168651, 2177501, 2458661, 2596661, 3215741, 3295541, 3416051, 3919241, 4353311, 5168921, 5201291, 5205461, 6404771
OFFSET
1,1
COMMENTS
This sequence is prime n, where there exist three twin prime pairs of (n,n+2), (n+6,n+8) and (n+18,n+20).
This is a subsequence of A132232 (Primes congruent to 11 mod 30 ).
Also, this is a subsequence of A128467 (30k+11).
LINKS
Eric Weisstein's World of Mathematics, Twin Primes
Wikipedia, Twin prime
EXAMPLE
For n = 18041, the numbers, 18041, 18043, 18047, 18049, 18059, 18061, are primes.
MATHEMATICA
Select[Prime[Range[2500]], Union[PrimeQ[{#, # + 2, # + 6, # + 8, # + 18, # + 20}]] = {True} &] (* Alonso del Arte, Dec 23 2014 *)
Select[Prime[Range[450000]], AllTrue[#+{2, 6, 8, 18, 20}, PrimeQ]&] (* Harvey P. Dale, Jun 11 2023 *)
PROG
(Python)
from sympy import isprime
for n in range(1, 10000001, 2):
..if isprime(n) and isprime(n+2) and isprime(n+6) and isprime(n+8) and isprime(n+18) and isprime(n+20): print(n, end=', ')
(PARI) forprime(p=1, 10^7, if(isprime(p+2) && isprime(p+6) && isprime(p+8) && isprime(p+18) && isprime(p+20), print1(p, ", "))) \\ Derek Orr, Dec 31 2014
CROSSREFS
Cf. A077800 (twin primes), A030430 (primes,10*n+1), A132232, A128467, A172456.
Sequence in context: A068647 A199148 A248732 * A232066 A330301 A264917
KEYWORD
nonn
AUTHOR
Karl V. Keller, Jr., Dec 23 2014
STATUS
approved