%I #4 Dec 22 2014 13:39:20
%S 1,2,2,4,5,4,7,13,13,7,11,29,44,29,11,16,53,127,127,53,16,22,85,288,
%T 493,288,85,22,29,125,529,1474,1474,529,125,29,37,173,850,3365,6068,
%U 3365,850,173,37,46,229,1251,6211,18528,18528,6211,1251,229,46,56,293,1732,10017
%N T(n,k)=Number of nXk nonnegative integer arrays with upper left 0 and every value within 2 of its king move distance from the upper left and every value increasing by 0 or 1 with every step right, diagonally se or down
%C Table starts
%C ..1...2....4.....7.....11......16.......22........29........37.........46
%C ..2...5...13....29.....53......85......125.......173.......229........293
%C ..4..13...44...127....288.....529......850......1251......1732.......2293
%C ..7..29..127...493...1474....3365.....6211.....10017.....14783......20509
%C .11..53..288..1474...6068...18528....42738.....79563....129173.....191583
%C .16..85..529..3365..18528...78674...244131....569420...1070036....1750150
%C .22.125..850..6211..42738..244131..1056756...3320837...7822881...14827629
%C .29.173.1251.10017..79563..569420..3320837..14564701..46222275..109796227
%C .37.229.1732.14783.129173.1070036..7822881..46222275.204666202..654583926
%C .46.293.2293.20509.191583.1750150.14827629.109796227.654583926.2919462498
%H R. H. Hardin, <a href="/A252836/b252836.txt">Table of n, a(n) for n = 1..1135</a>
%F Empirical for column k:
%F k=1: a(n) = (1/2)*n^2 - (1/2)*n + 1
%F k=2: a(n) = 4*n^2 - 12*n + 13 for n>1
%F k=3: a(n) = 40*n^2 - 199*n + 283 for n>3
%F k=4: a(n) = 480*n^2 - 3394*n + 6449 for n>5
%F k=5: a(n) = 6400*n^2 - 59190*n + 143483 for n>7
%F k=6: a(n) = 90112*n^2 - 1032064*n + 3059590 for n>9
%F k=7: a(n) = 1306624*n^2 - 17846996*n + 62638467 for n>11
%e Some solutions for n=4 k=4
%e ..0..1..2..2....0..1..1..2....0..0..1..1....0..0..1..1....0..0..1..1
%e ..1..1..2..2....0..1..1..2....1..1..1..1....0..1..1..1....1..1..1..1
%e ..1..1..2..3....1..1..2..2....1..1..2..2....0..1..1..1....1..1..1..1
%e ..1..2..2..3....1..1..2..2....1..2..2..3....1..1..2..2....1..1..2..2
%Y Column 1 is A000124(n-1)
%Y Column 2 is A078370(n-2)
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_, Dec 22 2014