OFFSET
1,1
COMMENTS
Also positive integers y in the solutions to 12*x^2-4*y^2+32*x+2*y+36 = 0, the corresponding values of x being A252762.
LINKS
Colin Barker, Table of n, a(n) for n = 1..437
Index entries for linear recurrences with constant coefficients, signature (195,-195,1).
FORMULA
a(n) = 195*a(n-1)-195*a(n-2)+a(n-3).
G.f.: -8*x*(3*x^2-10*x+1) / ((x-1)*(x^2-194*x+1)).
a(n) = (6+(285-164*sqrt(3))*(97+56*sqrt(3))^n+(97+56*sqrt(3))^(-n)*(285+164*sqrt(3)))/24. - Colin Barker, Mar 02 2016
a(n) = 194*a(n-1)-a(n-2)-48. - Vincenzo Librandi, Mar 03 2016
EXAMPLE
8 is in the sequence because H(8) = 120 = 12+22+35+51 = P(3)+P(4)+P(5)+P(6).
MATHEMATICA
LinearRecurrence[{195, -195, 1}, {8, 1480, 287064}, 30] (* Vincenzo Librandi, Mar 03 2016 *)
PROG
(PARI) Vec(-8*x*(3*x^2-10*x+1)/((x-1)*(x^2-194*x+1)) + O(x^100))
(Magma) I:=[8, 1480]; [n le 2 select I[n] else 194*Self(n-1)- Self(n-2)-48: n in [1..20]]; // Vincenzo Librandi, Mar 03 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 21 2014
STATUS
approved