OFFSET
0,3
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
M. Cheng, J. Duncan, and J. Harvey, Umbral Moonshine, arXiv:1204.2779 [math.RT], 2012-2013.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of 2*F(x^2)^5 / (F(x) * F(x^4)^2) - F(x)^3 / F(x^2) - 4*x * F(x) * F(x^2) in powers of x where F() is the g.f. for A030200.
Expansion of f(-q^22) * phi(-q^22)^3 / chi(-q^2) - 2 * q^4 * f(-q^22) * (chi(-q) * psi(q^11)^3 + chi(q) * psi(-q^11)^3) in powers of q^2 where phi(), psi(), chi(), f() are Ramanujan theta functions.
a(n) = b(2*n + 1) where b() is multiplicative with b(p^e) = (-1)^e if p = 11, b(p^e) = b(p)*b(p^(e-1)) - p*b(p^(e-2)) if p != 11.
G.f. is a period 1 Fourier series which satisfies f(-1 / (44 t)) = 44 (t/i)^2 f(t) where q = exp(2 Pi i t).
EXAMPLE
G.f. = 1 + x - 3*x^2 + 2*x^3 - 2*x^4 - x^5 - 4*x^6 - 3*x^7 + 6*x^8 + ...
G.f. = q + q^3 - 3*q^5 + 2*q^7 - 2*q^9 - q^11 - 4*q^13 - 3*q^15 + 6*q^17 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ QPochhammer[ x] QPochhammer[ x^11] (2 EllipticTheta[ 3, 0, x] EllipticTheta[ 3, 0, x^11] - EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^11] - 4 x QPochhammer[ x^2] QPochhammer[ x^22]), {x, 0, n}];
PROG
(PARI) {a(n) = local(A, F1, F2, F4); if( n<0, 0, A = x * O(x^n); F1 = eta(x + A) * eta(x^11 + A); F2 = subst(F1, x, x^2); F4 = subst(F1, x, x^4); polcoeff( 2*F2^5 / (F1 * F4^2) - F1^3 / F2 - 4*x * F1*F2, n))};
(Sage) A = CuspForms( Gamma0(44), 2, prec=146) . basis(); A[0] + A[2];
(Magma) A := Basis( CuspForms( Gamma0(44), 2), 146); A[1] + A[3];
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Dec 21 2014
STATUS
approved