|
|
A252730
|
|
a(n) = P_n(n) with P_0(z) = z+1 and P_n(z) = z + P_{n-1}(z)*(P_{n-1}(z)-z) for n>1.
|
|
2
|
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 0..10
A. V. Aho and N. J. A. Sloane, Some doubly exponential sequences, Fibonacci Quarterly, Vol. 11, No. 4 (1973), pp. 429-437, alternative link.
|
|
MAPLE
|
p:= proc(n) option remember;
z-> z+ `if`(n=0, 1, p(n-1)(z)*(p(n-1)(z)-z))
end:
a:= n-> p(n)(n):
seq(a(n), n=0..8);
|
|
MATHEMATICA
|
p[n_] := p[n] = Function[z, z + If[n == 0, 1, p[n-1][z]*(p[n-1][z] - z)]];
a[n_] := p[n][n];
Table[a[n], {n, 0, 8}] (* Jean-François Alcover, Jun 12 2018, from Maple *)
|
|
CROSSREFS
|
Main diagonal of A177888.
Sequence in context: A309060 A270816 A217957 * A225728 A351590 A175984
Adjacent sequences: A252727 A252728 A252729 * A252731 A252732 A252733
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Dec 20 2014
|
|
STATUS
|
approved
|
|
|
|