login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A252722 Number of (3+2) X (n+2) 0..3 arrays with every consecutive three elements in every row and diagonal having exactly two distinct values, and in every column and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order. 1
54, 56, 62, 70, 86, 110, 114, 158, 194, 214, 290, 374, 402, 566, 722, 790, 1106, 1430, 1554, 2198, 2834, 3094, 4370, 5654, 6162, 8726, 11282, 12310, 17426, 22550, 24594, 34838, 45074, 49174, 69650, 90134, 98322, 139286, 180242, 196630, 278546, 360470 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = a(n-2) + 2*a(n-3) - 2*a(n-5) for n>6.

Empirical g.f.: 2*x*(27 + 28*x + 4*x^2 - 47*x^3 - 44*x^4 + 12*x^5) / ((1 - x)*(1 + x)*(1 - 2*x^3)). - Colin Barker, Dec 05 2018

EXAMPLE

Some solutions for n=4:

..0..0..1..0..0..1....0..1..0..0..1..0....0..0..1..0..0..1....0..1..1..2..1..1

..0..2..2..0..2..2....1..1..2..1..1..2....2..1..1..3..1..1....1..0..1..1..2..1

..0..1..0..0..1..0....2..1..1..2..1..1....1..2..1..1..3..1....3..3..1..3..3..1

..0..0..1..0..0..1....3..1..3..3..1..3....0..0..1..0..0..1....0..1..1..0..1..1

..0..3..3..0..3..3....1..1..2..1..1..2....3..1..1..2..1..1....1..2..1..1..0..1

CROSSREFS

Row 3 of A252719.

Sequence in context: A116386 A247900 A107936 * A326181 A300447 A295696

Adjacent sequences:  A252719 A252720 A252721 * A252723 A252724 A252725

KEYWORD

nonn

AUTHOR

R. H. Hardin, Dec 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 21 16:04 EST 2019. Contains 329371 sequences. (Running on oeis4.)