login
A252692
Number of (n+2) X (5+2) 0..3 arrays with every consecutive three elements in every row and column having exactly two distinct values, and in every diagonal and antidiagonal not having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
707, 1047, 291, 2048, 568, 4138, 1276, 8608, 3244, 18576, 9144, 42296, 28216, 103864, 93952, 280984, 331576, 844608, 1220616, 2791640, 4625680, 9918808, 17868760, 36985312, 69891304, 142049784, 275570832, 555075896, 1092124792, 2190548320
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 4*a(n-1) - 2*a(n-2) - 7*a(n-3) + 2*a(n-4) + 6*a(n-5) + 14*a(n-6) - 20*a(n-7) - 4*a(n-8) + 8*a(n-9) for n>10.
Empirical g.f.: x*(707 - 1781*x - 2483*x^2 + 7927*x^3 - 1127*x^4 + 1663*x^5 - 16566*x^6 + 9396*x^7 + 6600*x^8 - 4256*x^9) / ((1 - x)*(1 - 2*x)*(1 - x - x^2)*(1 - 2*x^2)*(1 - 2*x^3)). - Colin Barker, Dec 05 2018
EXAMPLE
Some solutions for n=4:
..0..0..1..1..0..0..1....0..0..1..0..1..1..0....0..1..0..0..1..1..0
..2..3..2..3..2..3..2....2..3..2..3..2..3..2....2..3..2..3..2..3..2
..2..3..2..3..2..3..2....2..3..2..3..2..3..2....2..3..2..3..2..3..2
..0..1..0..1..0..1..0....1..0..1..0..1..0..1....1..0..1..0..1..0..1
..0..1..0..1..0..1..0....1..0..1..0..1..0..1....1..0..1..0..1..0..1
..3..2..2..3..2..2..3....2..2..3..2..3..2..3....2..3..2..3..3..2..2
CROSSREFS
Column 5 of A252695.
Sequence in context: A005845 A183795 A335092 * A074869 A212476 A332170
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 20 2014
STATUS
approved